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The present paper reports our attempt to search for a new universal framework in
nonequilibrium physics. We propose a thermodynamic formalism that is expected to
apply to a large class of nonequilibrium steady states including a heat conducting fluid,
a sheared fluid, and an electrically conducting fluid. We call our theory steady state
thermodynamics (SST) after Oono and Paniconi’s original proposal. The construction
of SST is based on a careful examination of how the basic notions in thermodynamics
should be modified in nonequilibrium steady states. We define all thermodynamic quan-
tities through operational procedures which can be (in principle) realized experimen-
tally. Based on SST thus constructed, we make some nontrivial predictions, including
an extension of Einstein’s formula on density fluctuation, an extension of the minimum
work principle, the existence of a new osmotic pressure of a purely nonequilibrium
origin, and a shift of coexistence temperature. All these predictions may be checked
experimentally to test SST for its quantitative validity.
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1. INTRODUCTION

1.1. Motivation and the Goal of the Paper

Construction of statistical mechanics that applies to nonequilibrium states has
been a challenging open problem in theoretical physics. By statistical mechan-
ics, we mean a universal theoretical framework that enables one to precisely
characterize states of a given system, and to compute (in principle) arbitrary
macroscopic quantities. Nobody knows what the desired nonequilibrium statistical
mechanics should look like. Indeed it seems highly unlikely that there is statistical
mechanics that applies to any nonequilibrium systems. A much more modest (but
still extremely ambitious) goal is to look for a theory that applies to nonequi-
librium steady states, which are out of equilibrium but have no macroscopically
observable time dependence. There may be a chance that probability distributions
for nonequilibrium steady states can be obtained from a general principle, analo-
gous to the equilibrium statistical mechanics. Our ultimate goal is to find such a
principle, but the goal (if any) is still very far away.

We wish to recall the history of equilibrium statistical mechanics. When
Boltzmann, Gibbs, and others constructed statistical mechanics, the formalism of
thermodynamics played a fundamental role as a theoretical guide. In particular,
Gibbs seems to have intentionally sought for a probability distribution which most
naturally recovers some of the thermodynamic relations.

In our attempt toward nonequilibrium statistical mechanics, we too would like
to start from the level of phenomenology and look for a possible thermodynamics.
By a thermodynamics, we mean a rigid mathematical structure consisting of math-
ematical relations among certain quantities in a physical system. The mathematical
structure of thermodynamics is clearly and abstractly explained, for example, in
Refs. 1–3. The conventional thermodynamics for equilibrium systems is a typical
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and no doubt the most important example of thermodynamics, but it is not the
only example (see, for example, Sec. 3 of Ref. 2 and Appendix A1 of. Ref. 4.

Then it makes sense to look for a thermodynamics in a physical context other
than equilibrium systems. We wish to do that for nonequilibrium steady states. If
it turns out that there is no sensible thermodynamics for nonequilibrium steady
states, then we should give up seeking for statistical mechanics. If there is a ther-
modynamics, on the other hand, then we can start looking for statistical mechanics
which is consistent with the thermodynamics. Our goal in the present paper is to
propose a thermodynamics for nonequilibrium steady states, and to convince the
readers that our proposal is essentially the unique possible thermodynamics.

The standard theory of nonequilibrium thermodynamics (see Sec. 1.3.1) is
based on the local equilibrium hypothesis, which roughly asserts that each small
part of a nonequilibrium state can be regarded as a copy of a suitable equilibrium
state. But such a description seems insufficient for general nonequilibrium steady
states, especially when the “degree of nonequilibrium” is not small.

Consider, for example, a system with steady heat flow. It is true that quan-
tities like the temperature and the density become essentially constant within a
sufficiently small portion of the system. But no matter how small the portion
is, there always exists a heat flux passing through it and hence the local state
is not isotropic. It is quite likely that the pressure tensor, for example, becomes
anisotropic, and the equation of state is consequently modified. Then the local state
cannot be identical to an equilibrium state, but should be described rather as a local
steady state.

There has been some attempts to formulate thermodynamics for nonequilib-
rium steady states by going beyond local equilibrium treatments. See Sec. 1.3.5.
Among these attempts, we regard the steady state thermodynamics (SST) pro-
posed by Oono and Paniconi(2) to be most sophisticated and promising. The basic
strategy of Oono and Paniconi is to seek for a universal thermodynamic formal-
ism respecting general mathematical structure of thermodynamics and operational
definability of thermodynamic quantities. As far as we know, no other proposals
of nonequilibrium thermodynamics follow such logically strict rules. Oono and
Paniconi’s SST, however, is still too abstract to be tested empirically.

In the present paper, we follow the basic strategy of Oono and Paniconi’s, but
try to construct much more concrete theory which leads to nontrivial predictions.
Our strategy in the present work may be summarized as follows.

• Concentrate on some typical examples (i.e., a heat conducting fluid, a
sheared fluid, and an electrically conducting fluid) of nonequilibrium steady
states, always trying to elucidate universal aspects of the problem.

• Examine carefully how the basic notions of thermodynamics (for exam-
ple, scaling, extensivity/intensivity, and operations to systems) should be
modified in nonequilibrium steady states.
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• Define every thermodynamic quantity through a purely operational proce-
dure which can be realized experimentally.

• Make concrete predictions which may be checked experimentally to test
our theory for its quantitative validity.

As a result, our theory has no direct logical connection with Oono and Paniconi’s
SST. But we keep the name SST to indicate that we share the basic philosophy
with them.

Our theory is of course based on some phenomenological assumptions, the
biggest one being the assumption that there exists a sensible thermodynamics.
Although we are confident about theoretical consistency of our SST, its validity
must ultimately be tested empirically.

If we restrict ourselves to certain idealized (but still nontrivial) theoretical
models, we can demonstrate that the formalism of SST is indeed realized. We
shall present such model dependent results as Appendices. The most complete
“existence proof” is the results in Appendix B about the driven lattice gas, a
standard stochastic model for nonequilibrium steady states. For a sheared fluid
with a “weak coupling,” we also recover a significant part (but, not the whole) of
SST as we describe in Appendix A.

Of course we have no intention to claim that our SST should cover nonequi-
librium states in general. Systems with explicit macroscopic time-dependence are
out of consideration from the beginning. Systems which are too unstable to main-
tain stable thermodynamics cannot be treated. Moreover, since we make a full use
of the pressure, model systems (such as chains of oscillators) which do not possess
well-defined pressure do not fit into our scheme. We nevertheless hope that our
formalism covers a generic and nontrivial class of nonequilibrium steady states.

The organization of this long paper may easily be read off from the table of
contents. After discussing necessary materials from equilibrium physics in Sec. 2,
we carefully describe our assumptions, and construct steady state thermodynamics
step by step through Secs. 3–7. To help the readers, the beginning of each of these
sections contains a brief summary of the section.

Before going into this massive main body, the reader is invited to take a
look at the next Sec. 1.2, where we offer a very quick tour of our construction
and predictions. In addition, we compare our approach with some of the existing
attempts in Sec. 1.3, discuss possible experimental verifications in Sec. 8.2, and
answer some of the “frequently asked questions” in Sec. 8.3. Appendices, which
treat model dependent results, may be studied independently after reading the
introductory Sec. 1.2.

We should better stress here that the present paper does not report a standard
scientific research in which one provides answers to well established problems.
We report our (admittedly ambitious) attempt to search for a novel universal
framework that describes Nature. We thus take a nonstandard approach where we
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Fig. 1. (a) The nonequilibrium steady states of a sheared fluid. The velocity gradient is maintained
by shear forces exerted on the fluid by the upper and the lower walls. The two walls exert exactly the
opposite forces, whose magnitudes are τ , on the fluid. The steady state is parameterized as (T, τ ; V, N ).
(b) The pressure is determined by measuring the vertical mechanical force exerted on the wall. (c) The
chemical potential is determined by adding external potential to the system.

proceed step by step, stating each assumption carefully, examining its consistency,
and discussing the consequences. We have tried our best to make the presentation
as transparent as possible, not hiding any subtle points.

1.2. A Quick Look at Steady State Thermodynamics (SST)

To give the reader a rough idea about what our steady state thermodynam-
ics is all about, we shall here outline (rather superficially) our construction and
predictions in a single example of a sheared fluid. Every step illustrated here will
be examined and explained carefully in latter sections of the paper. In particular
we will thoroughly discuss in the latter sections why we believe that the present
construction is essentially the unique way toward a sensible thermodynamics for
nonequilibrium steady states.

1.2.1. Nonequilibrium Steady State in a Sheared Fluid

Suppose that N moles of fluid is contained in a box with the cross section
area A and height h, and kept at a constant temperature T with the aid of an
external heat bath. To make the state nonequilibrium, the upper wall of the box is
moved horizontally with a constant speed � while the lower wall is kept at rest.3

We suppose that the walls are “sticky,” and the fluid will reach, after a sufficiently
long time, a nonequilibrium steady state with a velocity gradient as in Fig. 1(a).
We denote by τ the total horizontal force that the upper wall exerts on the fluid.
The steadiness implies that the lower wall exerts exactly the opposite force on the
fluid. Clearly the shear force τ measures the “degree of nonequilibrium” of the
steady state.

3 It is convenient to imagine that periodic boundary conditions are imposed in the horizontal directions.
Experimentally, one should modify the geometry (say, into a ring shape) to keep on moving the wall.
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We shall parameterize the nonequilibrium steady state as (T, τ ; V, N ) where
V = Ah is the volume. As in the equilibrium thermodynamics (see Sec. 2.1), we
frequently consider scaling, decomposition, and combination of steady states. In
doing so, we always use the convention to fix the cross section area A constant,
and vary only the height h.

In this convention of scaling, T and τ are identified as intensive variables,
while V and N as extensive variables. These identifications are fundamental in
our construction of SST.

We stress that the above convention of scaling and the choice of thermo-
dynamic variables are results of very careful examination of general structures
of thermodynamics and the characters specific to nonequilibrium steady states.
These points are discussed in Secs. 3 and 4.

1.2.2. Pressure and Chemical Potential

We now fix the two intensive parameters T and τ , and determine the pressure
p(ρ) and the chemical potential µ(ρ) as functions of the density ρ = V/N . We
insist on determining these quantities in a purely operational manner, only using
procedures that can be realized experimentally. This is the topic of Sec. 5.

The pressure p(ρ) is simply defined as the mechanical pressure on the lower
or the upper wall as in Fig. 1(b). In other words we concentrate on the vertical
component of the pressure.

The measurement of the chemical potential µ(ρ) requires extra cares. We
(fictitiously) divide the system into half along a horizontal plane, and apply a
potential which is equal to u1 in the lower half and equal to u2 in the upper half.
We denote by ρ1 and ρ2 the densities in the lower and the upper parts, respectively,
in the steady state under the potential. We shall define the SST chemical potential
µ(ρ) as a function which satisfies

µ(ρ1) + u1 = µ(ρ2) + u2, (1.1)

for any u1 and u2.
Note that this only determines the difference of µ(ρ). There remains a free-

dom to add an arbitrary constant to µ(ρ). In other words, we have determined the
V , N dependence of the chemical potential, but not T , ν dependence.

An essential point of these definitions is that the Maxwell relation

∂p(ρ)

∂ρ
= ρ

∂µ(ρ)

∂ρ
(1.2)

can be shown to hold in general.
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Fig. 2. Two basic applications of the SST free energy F(T, τ ; V, N ). (a) We conjecture that Einstein’s
formula for density fluctuation extends to nonequilibrium steady states, provided that the two regions
are separated by a wall with a window in it. (b) The minimum work principle is conjectured to hold
when the agent is only allowed to move horizontal walls vertically.

1.2.3. Helmholtz Free Energy

Since we have determined the pressure and the chemical potential, we can
introduce and investigate the SST free energy. This is done in Sec. 6. We define
the specific free energy through the Euler equation as

f (ρ) = −p(ρ) + ρ µ(ρ). (1.3)

The extensive free energy is obtained as F(T, τ ; V, N ) = V f (N/V ). We have
thus operationally determined the V , N dependence of F(T, τ ; V, N ) for each T
and τ .

We make three predictions which involve the V , N dependence of the free
energy. The first two of these phenomenological conjectures can be verified by
making plausible assumption about contact, as we shall see in Appendix B.3.4. In
a class of stochastic processes treated in Appendix , all the three conjectures are
derived.

The first prediction is an extension of Einstein’s formula on macroscopic
density fluctuation. Consider the steady state (T, τ ; 2V, 2N ) with 2N moles of
fluid in a box with volume 2V . We divide the system into two identical parts with
volumes V by a horizontal wall with a small window4 in it as in Fig. 2(a). We fix
the wall in the middle, and apply the same shear force τ to the upper and the lower
walls to maintain the constant shear in the whole system. In this way the two parts
are coupled weakly and exchange fluid molecules. Let N1 and N2 be the amounts
of fluid in the lower and the upper parts, respectively. Although both N1 and N2

should be equal to N in the average, one always observes a fluctuation in a finite
system. Our conjecture is that the probability p̃(N1, N2) of observing N1 and N2

4 See Appendix B.3.4 for details about the window.
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moles of fluid in the two parts is given by

p̃(N1, N2) ∝ exp

[
− 1

kBT
{F(T, τ ; V, N1) + F(T, τ ; V, N2)}

]
, (1.4)

where kB is the Boltzmann constant. Unlike the corresponding relation in equilib-
rium, this relation is expected to hold only when the two regions are separated by
the horizontal wall with a window.

The second prediction is the fluctuation-response relation for time-dependent
processes that takes place in the same setting as above. We shall leave details to
Secs. 6.2, A.4, and B.6.

The third prediction is an extension of the minimum work principle, a version
of the second law of thermodynamics. Suppose that an outside agent moves one
of the horizontal walls of the box vertically, always keeping the wall horizontal
as in Fig. 2(b). We assume that T and τ are kept constant during the operation.
We denote by V and V ′ the initial and the final volumes, respectively. Denoting
by W the total mechanical work done by the agent, we can write the conjectured
minimum work principle for nonequilibrium steady states as

W ≥ F(T, τ ; V ′, N ) − F(T, τ ; V, N ), (1.5)

which has exactly the same form as the corresponding equilibrium relation. An
essential difference is that we here severely restrict allowed operations.

1.2.4. Flux-Induced Osmosis and Shift of Coexistence Temperature

We shall now determine the SST free energy F(T, τ ; V, N ) completely and
make further conjectures. This is the topic of Sec. 7.

The key idea is to consider the setting in Fig. 3(a), where a nonequilibrium
steady state (T, τ ; V, N ) with a finite shear is in contact with an equilibrium state
(T, 0; V ′, N ′) via a porous wall. Since the two states can exchange fluid, we require
that

µ(T, τ ; V, N ) = µ(T, 0; V ′, N ′) (1.6)

as in equilibrium thermodynamics. Since µ(T, 0; V ′, N ′) is an already known
equilibrium quantity, we use (1.6) as the definition of the SST chemical potential.

Now that the chemical potential has been fully determined, we can also deter-
mine the SST free energy F(T, τ ; V, N ) through (1.3), including its dependence
on T and τ . Then we can define the SST entropy

S(T, τ ; V, N ) = − ∂

∂T
F(T, τ ; V, N ), (1.7)
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Fig. 3. (a) A nonequilibrium steady state with a finite shear is in contact with an equilibrium state
without a shear. The two states are separated by a porous wall that allows fluid to pass thorough.
The top wall and the porous wall are at rest while the bottom wall has a constant horizontal velocity.
This setup is used to determine the chemical potential and the free energy completely. SST leads to a
conjecture that the (vertical) pressure in the steady state is always larger than that in the equilibrium
state. (b) A nonequilibrium steady state with a phase coexistence. We conjecture that the coexistence
temperature Tc(p, τ ) deviates from that in the equilibrium.

and a new extensive quantity

�(T, τ ; V, N ) = − ∂

∂τ
F(T, τ ; V, N ). (1.8)

We call �(T, τ ; V, N ) the nonequilibrium order parameter, since we can show (un-
der the assumption about concavity of F(T, τ ; V, N ) in τ ) that �(T, 0; V, N ) = 0
and �(T, τ ; V, N ) = −�(T,−τ ; V, N ) ≥ 0 if τ ≥ 0.

The nonequilibrium order parameter �(T, τ ; V, N ) characterizes two impor-
tant phenomena, which are intrinsic to nonequilibrium steady states.

The first phenomenon takes place in the setting of Fig. 3(a). Suppose one
fixes the pressure peq of the equilibrium part, and changes the shear force τ . Then
we can show that the pressure pss of the steady state satisfies

∂pss

∂τ
= �(T, τ ; V, N )

V
. (1.9)

Sine pss = peq when τ = 0, this (and the knowledge about the sign of �) implies
that pss ≥ peq in general. We expect that pss > peq holds for τ �= 0. The steady
state always has a higher pressure than the equilibrium state. We call this pressure
difference the flux-induced osmosis (FIO). Note that FIO can never be predicted
within the standard local equilibrium treatments.

To see the second phenomenon, suppose that two phases (such as gas and
liquid) coexist within a steady state as in Fig. 3(b). We denote by Tc(p, τ ) the
temperature at which the coexistence takes place when the pressure and the shear
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force are fixed at p and τ , respectively. We can then show that

∂Tc(p, τ )

∂τ
= −�g − ��

Sg − S�

, (1.10)

where Sg,� and �g,� are the entropy and the nonequilibrium order parameter in the
gas and the liquid phases, respectively. This means that in general the coexistence
temperature Tc(p, τ ) in a nonequilibrium steady state is different from that in
equilibrium. This, again, is a truly nonequilibrium phenomenon. Applied to the
phase coexistence between a fluid and a solid phases, the same argument yields
Tc(p, τ ) < Tc(p, 0). Thus the shear induces melting.

It is important that the same quantity � plays the essential roles in the above
two phenomena. This means that we can test the quantitative validity of SST
through purely experimental studies.

1.3. Existing Approaches to Nonequilibrium

Steady States

In the present section, we briefly discuss some of the existing approaches to
nonequilibrium steady states, and see how they are (or how they are not) related
to our own approach of SST. We note that the aim here is not to give an exhaustive
and balanced review of the field, but to place our new work in the context of
(necessarily biased) summary of nonequilibrium thermodynamics and statistical
mechanics.

1.3.1. Phenomenological Theories in the Linear
Nonequilibrium Regime

Probably the best point to start this discussion on nonequilibrium physics is
Einstein’s celebrated work on the Brownian motion. We have no intention of going
deeply into the work, but wish to mention that Einstein’s formula

D = kBT µ, (1.11)

derived in Refs. 5 and 6 represents a deep fact that the transport coefficient (the
mobility µ) in a driven nonequilibrium state is directly related to the diffusion
constant D, which characterizes fluctuation in the equilibrium state.

(a) Onsager’s theory: Such a relation between equilibrium fluctuation and
nonequilibrium transport was stated as a fundamental principle of (linear) nonequi-
librium physics by Onsager. In his famous paper on the reciprocal relations,(7) he
formulated the regression hypothesis which asserts that “the average regression
of fluctuations (in equilibrium) will obey the same laws as the corresponding
macroscopic irreversible processes.”(8) From the regression hypothesis and micro-
scopic reversibility of underlying mechanics, Onsager(7,8) derived the reciprocal
relations for transport coefficients. Since the reciprocal relations are established
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experimentally, this provides a strong support to the regression hypothesis, at least
in the linear nonequilibrium regime. It is fair to say that, as far as nonequilib-
rium steady states in linear transport regime are concerned, Onsager constructed
a beautiful phenomenology with sound theoretical and empirical bases.

Onsager’s theory is essentially related to (at least) three subsequent develop-
ments in nonequilibrium physics that we shall discuss in the following.

(b) Linear response relations: A series of formulae that express various trans-
port coefficients in terms of time-dependent equilibrium correlation functions was
found in various contexts, the first example being that by Nyquist,(9) who precedes
Onsager. These formulae are now known under the generic name linear response
relations. See, for example Refs. 10 and 11. We believe that the conceptual basis
of these relations should be sought in a certain form of regression hypothesis, i.e.,
quantitative correspondence between nonequilibrium transport and equilibrium
fluctuation.

(c) Variational principles: The second development is the establishment of
variational principles which relate currents to the corresponding forces in the
linear response regime. The simplest version of such principles, called the prin-
ciple of the least dissipation of energy, is obtained as a direct consequence of the
reciprocal relations.(7,8) Another type of variational principle attempting to char-
acterize nonequilibrium steady states is called the principle of minimum entropy
production.(12) It is understood that all the correct variational principles in linear
transport regime are based on the Onsager-Machlup theory(13−15) which concerns a
large deviation functional for the history of fluctuations. See, for example Ref. 16.

(d) Nonequilibrium thermodynamics: Flux-force relations with the reci-
procity constitute fundamental ingredients of the standard theory known as
nonequilibrium thermodynamics, which provides a macroscopic description of
a system which slightly deviates from equilibrium.(12,17) A fundamental assump-
tion in this approach is that a small portion of the system in the nonequilibrium state
can be regarded as a local equilibrium state in the sense that all the thermodynamic
relations in equilibrium (not only universal relations, but also equations of states
specific to each system) are valid without modifications. One then allows macro-
scopic thermodynamic variables to vary slowly in space and time, assuming that
there takes place linear transport according to a given set of transport coefficients.

(e) Relation to SST: We wish to see how our SST is related to these theo-
ries. In short, we see no direct logical connection for the moment. All of these
theories are essentially limited to linear transport regime with very small “de-
gree of nonequilibrium,” while SST is designed to apply to any nonequilibrium
steady states. The variational principles mentioned above attempt to characterize
the steady state itself, while the SST free energy mainly describes the response
of nonequilibrium steady states to external operations (such as the change of the
volume) under a fixed degree of nonequilibrium. We can say that, at least for the
moment, SST covers aspects complimentary to that dealt with the above theories.
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It would be very interesting to incorporate Onsager’s and related phenomenology
into SST, but we do not yet see how this can be accomplished.

We have already stressed in Sec. 1.1 the difference between the nonequilib-
rium thermodynamics and our SST. Our main motivation is to construct thermo-
dynamics that applies to systems very far from equilibrium. We must abandon the
description in terms of local equilibrium states, and replace it with that in terms
of local steady states.5

1.3.2. Approaches from Microscopic Dynamics

It is a natural idea to realize and characterize nonequilibrium steady states
by using equilibrium states and microscopic (classical or quantum) dynamics.
Suppose that we are interested in a heat conducting steady state. We prepare an ar-
bitrary (macroscopic) subsystem, and couple it to two “heat baths” which are much
larger than the subsystem. The two heat baths are initially in thermal equilibria
with different temperatures. We then let the whole system evolve according to the
microscopic equation of motion. After a sufficiently long (but not too long) time,
the subsystem is expected to reach a steady heat conducting state. By projecting
only onto the subsystem, we get the desired nonequilibrium steady state. If such
a projection can be executed for general systems, there is a chance that we can
extract a universal description for nonequilibrium steady states.

Of course the procedure described above is in general too difficult to be carried
out literally even in the linear response regime. We shall see two approximate
calculation schemes within the conventional statistical mechanics (which are (a)
and (b)), and some of more mathematical approaches (which are (c), (d), and (e)).

If and when these theories provide us with concrete information about the
structure of nonequilibrium steady states and their response to external operations,
we can (and should) check the consistency between such predictions and those
obtained from SST. For the moment most of the known results are rather formal,
and we do not find any concrete results which should be compared with SST.

(a) Linear response theory: Probably the most well-known of such schemes
is the linear response theory.(10,11) Although this theory is sometimes referred to
as a “microscopic (or rigorous) derivation” of linear response relations (see, for
example Ref. 10), it is after all a formal perturbation theory about the equilibrium
state, and does not deal with the intrinsic characterization of nonequilibrium
steady states. As far as we understand, certain phenomenological principle must
be invoked to justify such a derivation.

5 It should be noted that, in the present work, we are concentrating on characterizing local steady
states, and not yet considering spatial and temporal variation of macroscopic variables. It is among
our future plan to patch together local steady states to describe non-uniform nonequilibrium states.
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(b) Methods based on the Liouville equation: In classical mechanics, the
Liouville equation can be a starting point for microscopic considerations. An
example is the derivation of the non-linear response relation of Ref. 18, which
leads to the Kawasaki-Gunton formula(19) for a nonlinear shear viscosity and
normal stresses. Another example is the establishment of the existence of long
range spatial correlations of fluctuations in nonequilibrium steady states.(20) These
results were obtained by employing the projection operator method pioneered by
Zwanzig(21) and Mori.(22) Further11more, through a formal argument based on
the Liouville equation, McLennan(23) and Zubarev(24) proposed a measure that
describes (or is claimed to describe) nonequilibrium states.

Although the derivations of these results involve (often uncontrolled)
assumptions, the nonlinear response relation, the Kawasaki–Gunton formula,
and the power-law decay of spatial correlations are believed to be physically
sound, since they can also be derived in simple manners from phenomenological
considerations. See Ref. 25 for the nonlinear response relation,(26) for the
Kawasaki–Gunton formula, and Ref. 20 for the long range correlations. The
measure proposed by McLennan and Zubarev is supported by neither a controlled
theory nor a phenomenological argument. It is therefore difficult to judge its
physical validity and usefulness.

(c) Weak coupling limit: In the weak coupling limit of quantum systems, the
procedure of projection can be executed rigorously.(27) Relaxation to the steady
state, the reciprocal relations in linear transport, and the principle of minimum
entropy production are established. In this study, however, explicit forms of
nonequilibrium steady states are not obtained.

(d) C∗ algebraic approaches: There is a series of works in which heat baths
are modeled by infinitely large systems of ideal gases, and the time evolution
is discussed by using the C∗ algebraic formalism. See, for example Ref. 28.
As far as we understand, the results obtained in this direction mainly focus on
what happens when more than two baths are put into contact, rather than what
happens in the subsystem where transport is taking place. We still do not get
much information about the structure of nonequilibrium steady states from these
works.

(e) Chain of anharmonic oscillators A standard model for heat conduction
in classical mechanics is the chain of coupled anharmonic oscillators whose two
ends are attached to two heat baths with different temperatures. From numeri-
cal simulations (see, for example Ref. 29) it is expected that the model exhibits
a “healthy” heat conduction, i.e., obeys the Fourier law. Mathematically, basic
results including the existence, uniqueness and mixing property of the nonequi-
librium steady states are proved under suitable conditions,(30,31) but no concrete
information about the structure of the heat conducting state is available. Recently
a new perturbative method for the nonequilibrium steady state of this model was
developed.(32)
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1.3.3. Approaches from Meso-Scale Models

We turn to approaches to nonequilibrium steady states that employ a class of
models which are neither microscopic (as in mechanical treatments) nor macro-
scopic (as in thermodynamic treatments). The class, which may be called meso-
scopic, includes the Boltzmann equation, the nonlinear Langevin equations for
slowly varying macroscopic variables, and the driven lattice gas.

(a) Boltzmann equation: The method developed by Chapman and Enskog(33)

enables one to explicitly compute perturbative solutions of the Boltzmann equa-
tion. Expecting that the Boltzmann equation, which was originally introduced to
describe relaxation to equilibrium, may be extended to study nonequilibrium phe-
nomena,6 nonequilibrium stationary distribution functions have been calculated.
Recently, for example, a systematic calculation for heat conducting nonequilibrium
steady states was performed.(35,36) Such a study reveals detailed properties of the
nonequilibrium steady states, and may become an important guide in construction
of phenomenology and statistical mechanical theory. The relation of this result
to SST will be discussed in Sec. 7.4. As for recent progress in this direction, see
Refs. 35 and 36.

(b) Nonlinear Langevin model for macroscopic variables: Nonlinear
Langevin models for macroscopic variables were useful to study anomalous be-
havior of transportation coefficients at the critical point.(37) The shift of the critical
temperature under the influence of shear flow as well as the corresponding critical
exponents were calculated by analyzing the so called model H with the steady
shear flow.(38)

Such an approach might produce correct results for universal quantities (such
as the critical exponents) which are insensitive to minor details of models. It is
questionable, however, whether a non-universal quantity like the critical temper-
ature shift can be properly dealt with. Results from a model calculation may be
always improved by making the model more and more complicated, but such a pro-
cess of improvement seems endless. If the formulation of SST is true, on the other
hand, the shift of coexistence temperatures should be related to other measurable
quantities through the (conjectured) extended Clapeyron law, which is expected to
be universal.7

6 The Boltzmann equation can be derived from the BBGKY hierarchy in a low density limit around
the (spatially uniform) equilibrium state. (See Ref. 34 for the mathematical justification of the
derivation.) We have to keep in mind, however, that there is a logical possibility that correction terms
to the Boltzmann equation appear in the truncation process from the BBGKY hierarchy when the
spatial non-uniformity of the states are taken into account.

7 Needless to say, thermodynamic phases may be in principle determined from microscopic descriptions
when and if statistical mechanics for nonequilibrium steady states is constructed.
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(c) Driven lattice gas: Given the history that the lattice gas models (equiv-
alently, the Ising model) was the paradigm model in the study of equilibrium
phase transitions, it is natural that various stochastic models of lattice gases for
nonequilibrium states were studied. See, for example. Ref. 39 The simplicity of
these models made it possible to resolve some delicate issues rigorously, a no-
table examples being the long-range correlations(40) and the anomalous current
fluctuation.(41)

A standard nontrivial model is the driven lattice gas,(42) in which particles
on lattice are subject to hard core on-site repulsion, nearest neighbor interaction,
and a constant driving force. Many results, both theoretical and numerical, have
been obtained,(39,43) but the structure of the nonequilibrium steady state is still
not very well understood except for some partial results including the recent
perturbation expansion.(44) In Ref. 45 hydrodynamic limit and fluctuation was
studied for the nonequilibrium steady state in the driven lattice gas. Possibility of
thermodynamics of driven lattice gas being “shape-dependent” was pointed out in
Ref. 46. In SST, such a shape-dependence is properly taken into account in the basic
formalism.

For us the driven lattice gas provides a very nice “proving ground” for various
proposals and conjectures of SST. Some of our discussions in the present paper
are based on earlier numerical works by Hayashi and Sasa.(47) In Appendix of
the present paper, we also discuss theoretical results about SST realized in driven
lattice gases.

In spite of all these interesting works, we always have to keep in mind that
physical basis of these stochastic lattice models are still unclear. As for the stochas-
tic dynamics near equilibrium, it is well appreciated that the detailed balance
condition (which was indeed pointed out in Onsager’s work on the reciprocal
relations(7)) is the necessary and sufficient condition to make the model physically
meaningful. As for dynamics far away from equilibrium, we still do not know of
any criteria that should replace the detailed balance condition.

1.3.4. Recent Progress

In the last decade, there have been some progress in new directions of study
on nonequilibrium steady states. They are fluctuation theorem, additivity principle,
and dynamical fluctuation theory. We shall briefly review them and comment on
the relevance to SST.

(a) Fluctuation theorem: In a class of chaotic dynamical systems, a highly
nontrivial symmetry in the entropy production rate, now known by the name
fluctuation theorem, was found.(48,49) The fluctuation theorem was then extended
to nonequilibrium steady states in various systems.(50−52)
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Now it is understood that the essence of the fluctuation theorem lies in the fact
that the relevant nonequilibrium steady states are described by Gibbs measures for
space-time configurations.(52) It is known that nonequilibrium steady states that
are modeled by a class of chaotic dynamical system(4) or by a class of stochastic
processes(51,53) are described by space-time Gibbs measures. But it is not yet clear
if the description in terms of a space-time Gibbs measure is universally valid.

A more important question is whether a space-time description is really nec-
essary for nonequilibrium steady states. One might argue that any nonequilibrium
physics should be described in space-time language, since the time-evolution must
play a crucial role. On the other hand, one may also expect that the temporal axis
is redundant for the description of nonequilibrium steady states since nothing
depends on time.

Our formalism of SST is based on the assumption that one can construct a
consistent macroscopic phenomenology without explicitly dealing with the tempo-
ral axis. If a space-time description is mandatory for nonequilibrium physics, our
attempt should reveal its own failure as we pursue it. So far we have encountered
no inconsistencies.

(b) Additivity principle: Recently Derrida, Lebowitz, and Speer obtained
exact large deviation functionals for the density profiles in the nonequilibrium
steady states of the one dimensional lattice gas models (the symmetric exclusion
process(54,55) and the asymmetric exclusion process(56,57)) attached to two particle
baths with different chemical potentials. In the equilibrium states, the correspond-
ing large deviation functional coincides with the thermodynamic free energy.
Moreover their large deviation functional satisfies a very suggestive variational
principle named additivity principle. It was further proposed(58) that, in a large
class of one dimensional models, the large deviation functional for current satisfies
a similar additivity principle.

It would be quite interesting if these large deviation functionals could be
related to the SST free energy that we construct operationally. Unfortunately we
still do not see any explicit relations. A difficulty comes from the restriction to one
dimensional lattice systems, where it is not easy to realize macroscopic operations
which are essential in our construction. It is thus of great interest whether the
additivity principles can be extended to higher dimensions.

(c) Dynamical fluctuation theory: Bertini, De Sole, Gabrielli, Jona-Lasinio,
and Landim(59,60) re-derived the above mentioned large deviation functional by
analyzing the model of fluctuating hydrodynamics. In Refs. 59 and 60, the large de-
viation functional of the density profile is obtained through the history minimizing
an action functional for spontaneous creation of a fluctuation. When one is con-
cerned with equilibrium dynamics, which has the detailed balance property, such
a task can be accomplished essentially within the Onsager–Machlup theory.(14)

In nonequilibrium dynamics, where the detailed balance condition is explicitly
violated, a modified version of the Onsager-Machlup theory had to be devised to
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derive a closed equation8 for the large deviation functional.(59,60) By using the
equation, the possible form of the evolution of fluctuations was determined, and
a generalized type of fluctuation dissipation relation for nonequilibrium steady
states was proposed.

In Refs. 59 and 60 the form of fluctuating hydrodynamics must be assumed
or derived from other microscopic models. We believe that the SST free energy,
if it really exists, should be taken into account in this step. It would be quite
interesting if the fluctuation dissipation relation that they proposed is related to
the generalized second law of our SST.

1.3.5. Thermodynamics Beyond Local Equilibrium Hypothesis

There of course have been a number of attempts to formulate nonequi-
librium thermodynamics that goes beyond local equilibrium treatment.9 A
considerable amount of works appear under the name extended irreversible
thermodynamics.(63,64)

In extended irreversible thermodynamics, thermodynamic functions with ex-
tra variables for the “degree of nonequilibrium” are considered, and thermody-
namic relations are discussed for various systems. This is quite similar to what we
shall do in our own SST.

As far as we have understood, however, the philosophies behind extended
irreversible thermodynamics and our SST are very much different. In the literature
of extended irreversible thermodynamics, we do not find anything corresponding
to our careful (and lengthy) discussions about the convention of scaling, the
identification of intensive and extensive variables, the (almost) unique choice of
nonequilibrium variables, the fully operational construction of the free energy, or
the proof of Maxwell relation. We also notice that, in many works in the extended
irreversible thermodynamics, different levels of approaches, such as macroscopic
phenomenology, microscopic kinetic theory, and statistical mechanics (such as the
maximum entropy method) are discussed simultaneously. In our own approach

8 Unfortunately, it is likely that the equations for the large deviation functional can be solved exactly
only in special cases, the model treated by Derrida, Lebowitz, and Speer being an example.
9 Landauer(61,62) made a deep criticism to thermodynamics and statistical mechanics for nonequilib-

rium states in general. He argued, correctly, that one cannot expect to fully characterize a nonequi-
librium state by simply minimizing a local function of states like the energy or the free energy. The
main point of his argument is that a coupling between two different subsystems can be much more
delicate and trickier than we are used to in equilibrium physics.
We can assure that our SST is perfectly safe from Landauer’s criticism. First of all, we ourselves
have encountered the delicateness of variational principle in nonequilibrium steady states, and this
observation led us to the (almost) unique choice of nonequilibrium thermodynamic variables. This
point will be discussed in Sec. 4.2. Delicateness of contact is another issue that we ourselves have
realized (with a surprise) during the development of SST. In Sec. 7.5, we shall argue that the contact
between an equilibrium state and a nonequilibrium steady state may be very delicate.
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to SST, in contrast, we have tried to completely separate thermodynamics from
microscopic considerations, stressing what outcome we get (and we do not get)
from purely macroscopic phenomenology.

Although it is impossible to examine all the existing literature, it is very likely
that more or less the same comments apply to other approaches in similar spirit.
Examples includ

To make the comparison more concrete, let us take a look at two examples.
The same problem of sheared fluid that we have briefly seen in Sec. 1.2 is

treated, for example, in Refs. 68 and 69. Although the final conclusion(69) that
shear induces melting is the same, everything else is just different. The discussion
in Refs. 68 and 69 are essentially model dependent, while we try to derive universal
thermodynamic relations. Moreover the proposed thermodynamics in Refs. 68 and
69 uses the shear velocity � (more precisely the shear rate γ̇ = �/h where h is the
distance between the upper and the lower walls) as the nonequilibrium variable.
But one of our major conclusions in the present work is that a thermodynamics with
the variable � (or γ̇ ) has a pathological behavior. Thus the analysis of Refs. 68
and 69 can never be consistent with our SST. Indeed it is our opinion that the
introduction of the nonequilibrium entropy in Ref. 70 which gives a foundation to
the above works, is not well-founded. Analysis of sheared fluids in Refs. 71 and
72 looks sounder to us, but still does not contain careful steps as in SST.

In Ref. 73 the pressure in a heat conducting state is discussed. This again
is in a sharp contrast between our own discussion of a similar problem. The
work in Ref. 73 is based on a formula of the Shannon entropy obtained from
microscopic theories (kinetic theory and the maximum entropy calculation). We
see no reason that the Shannon entropy gives meaningful thermodynamic entropy
once the system is away from equilibrium. Operational meaning of the pressure is
also unclear. A gedanken experiment is proposed, but there seems to be no way of
realizing this setting (even in principle) unless one precisely knows in advance the
formula for the nonequilibrium pressure. Our discussion, in contrast, starts from a
completely operational definition of the pressure. We also predict a shift of pressure
due to nonequilibrium effects in Sec. 7.4, but as a universal thermodynamic
relation. Let us note in passing that the maximum entropy calculation (called
information theory), on which Ref. 73 and other related works rely (see also,
Ref. 74), is found to produce results which are inconsistent with the Boltzmann
equation (36).

To conclude, our SST is completely different in essentially all the aspects from
the extended irreversible thermodynamics and other similar approaches. The only
similarity is in superficial formalism, i.e., thermodynamic functions with extra
variables. It is our belief that our own approach achieves much higher standard
of logical rigor, and has a better chance of providing truly powerful and correct
description of nature.
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2. BRIEF REVIEW OF EQUILIBRIUM PHYSICS

Before dealing with nonequilibrium problems, we present a very brief sum-
mary of thermodynamics (Sec. 2.1), statistical mechanics (Sec. 2.2), and ap-
proaches based on stochastic processes (Sec. 2.3) for equilibrium systems. The
main purpose of the present section is to fix some notations and terminologies used
throughout the paper, to give some necessary background, and, most importantly,
to motivate our approach to steady state thermodynamics (SST).

2.1. Equilibrium Thermodynamics

Equilibrium thermodynamics is a universal theoretical framework which ap-
plies exactly to arbitrary macroscopic systems in equilibrium.

Here we restrict ourselves to the formalism of equilibrium thermodynam-
ics at a fixed temperature, since it is directly related to our approach to steady
state thermodynamics. See, for example Ref. 75 for relations between different
formalisms of thermodynamics.10

2.1.1. Equilibrium States and Operations

A fluid consisting of a single substance of amount11 N is contained in a
container with volume V and kept in an environment with a fixed temperature T .
If we leave the system in this situation for a sufficiently long time, it reaches
an equilibrium state, where no observable macroscopic changes take place. An
equilibrium state of this system is known to be uniquely characterized (at least
in the macroscopic scale) by the three macroscopic parameters T , V , and N . We
can therefore denote the equilibrium state symbolically as (T ; V, N ). Note that
we have separated the intensive variable T and the extensive variables V , N by a
semicolon. This convention will be used throughout the present paper.

In thermodynamics, various operations to equilibrium states play essential
roles. Let us review them briefly.

By gently inserting a thin wall into an equilibrium state, one can decompose
the state into two separate equilibrium states. This is symbolically denoted as

(T ; V, N ) → (T ; V1, N1) + (T ; V2, N2), (2.1)

10 The most beautiful formalism of thermodynamics uses energy variable instead of temperature. See,
for eaxample Ref. 3.

11 The amount of substance N is sometimes called the “molar number” since N is usually measured
in moles.
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where12 V1 + V2 = V and N1 + N2 = N . One may realize the inverse of this
operation by attaching the two equilibrium states together and removing the wall
between them. Another important operation is to put two or more equilibrium states
together, separating them by walls which do not pass fluids but are thermally
conducting. In this way we get an equilibrium state characterized by a single
temperature T and more than one pairs of (V, N ).

Given an arbitrary λ > 0, one can associate with an equilibrium state
(T ; V, N ) its scaled copy as

(T ; V, N ) → (T ; λV, λN ). (2.2)

The scaled copy has exactly the same properties as the original state, but its size
has been scaled.

The intensive variable T and the extensive variables V , N show completely
different behaviors under the operations (2.1) and (2.2). One may roughly interpret
that an intensive variable characterizes a certain property of the environment of
the system, while an extensive variable measures an amount of the system.

2.1.2. Helmholtz Free Energy

The Helmholtz free energy (hereafter abbreviated as “free energy”)
F(T ; V, N ) is a special thermodynamic function which carries essentially all
the information regarding the equilibrium state (T ; V, N ).

The free energy F(T ; V, N ) is concave in the intensive variable T , and
is jointly convex13 in the extensive variables V and N . Corresponding to the
decomposition (2.1), it satisfies the additivity

F(T ; V, N ) = F(T ; V1, N1) + F(T ; V2, N2), (2.3)

and corresponding to the scaling (2.2), the extensivity

F(T ; λV, λN ) = λ F(T ; V, N ). (2.4)

The free energy F(T ; V, N ) appears in the second law of thermodynamics
in the form of the minimum work principle. Consider an arbitrary mechanical
operation to the system executed by an external (mechanical) agent, a typical (and
important) example being a change of volume caused by the motion of a wall.
We assume that the system is initially in the equilibrium state (T ; V, N ), and the
operation is done in an environment with a fixed temperature T . Sufficiently long
time after the operation, the system will settle down to another equilibrium state

12 Note that V1, V2, N1, N2 in the right-hand side are not arbitrary. If one fixes (for example) V1, V2,
then N1, N2 are determined almost uniquely.

13 A function g(V, N ) is jointly convex in (V, N ) if g(λV1 + (1 − λ)V2, λN1 + (1 − λ)N2) ≤
λg(V1, N1) + (1 − λ)g(V2, N2) for any V1, V2, N1, N2, and 0 ≤ λ ≤ 1.
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(T ; V ′, N ). Let W be the total mechanical work done by the agent during the
whole operation. Then the minimum work principle asserts that the inequality

W ≥ F(T ; V ′, N ) − F(T ; V, N ) (2.5)

holds for an arbitrary operation. Note that the operation need not be gentle or slow.
Another important physical relation involving the free energy is the following

formula about fluctuation in equilibrium. Suppose that we have two systems of the
same volume V which are in a weak contact with each other which allows fluid
to move from one system to another slowly. If the total amount of fluid is 2N ,
the amount of substance in each subsystem should be equal to N in average. But
there always is a small fluctuation in the amount of substance. Let p̃(N1, N2) be
the probability density that the amounts of substance in the two subsystems are
N1 and N2. Then it is known that in equilibrium this probability behaves as

p̃(N1, N2) ∝ exp

[
− 1

kBT
{F(T ; V, N1) + F(T ; V, N2)}

]
, (2.6)

where kB is the Boltzmann constant. This is the isothermal version of Einstein’s
celebrated formula of fluctuation. See, for example, chapter XII of Ref. 76.

2.1.3. Variational Principles and Other Quantities

Let V1, V2, N1, and N2 be those in the decomposition (2.1). Then from the
extensivity (2.4) and the convexity of F(T ; V, N ), one can show the variational
relation14

F(T ; V1, N1) + F(T ; V2, N2) = min
V ′

1,V
′

2

(V ′
1+V ′

2=V )

{F(T ; V ′
1, N1) + F(T ; V ′

2, N2)},

(2.7)
which corresponds to the situation in which the system is divided by a movable
wall into two parts with fixed amounts N1 and N2 of fluids. The volumes V ′

1 and
V ′

2 of the two parts can vary within the constraint V ′
1 + V ′

2 = V , and finally settle
to the equilibrium values V1 and V2, respectively. If we define the pressure by

p(T ; V, N ) = −∂ F(T ; V, N )

∂V
, (2.8)

14 The derivation is standard, but let us describe it for completeness. Let N = N1 + N2 and
λ = N1/N , and take arbitrary V ′

1, V ′
2 with V ′

1 + V ′
2 = V . Then from the extensivity (2.4) and

the convexity (see footnote 13), we get F(T ; V ′
1, N1) + F(T ; V ′

2, N2) = λ F(T ; V ′
1/λ, N ) + (1 −

λ) F(T ; V ′
2/(1 − λ), N ) ≥ F(T ; V, N ). With the additivity (2.3), this implies a variational principle

(2.7).
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the variational relation (2.7) leads to the condition

p(T ; V1, N1) = p(T ; V2, N2), (2.9)

which expresses the mechanical balance between the two subsystems (that have
volumes V1 and V2, respectively). This thermodynamic pressure coincides with
the pressure defined in a purely mechanical manner.15

One can derive the similar variational relation

F(T ; V1, N1) + F(T ; V2, N2) = min
N ′

1,N ′
2

(N ′
1+N ′

2=N )

{F(T ; V1, N ′
1) + F(T ; V2, N ′

2)},

(2.10)
for the situation where the system is divided into two parts with fixed volumes V1,
V2, and the amounts N ′

1 and N ′
2 in the two parts may vary within the constraint

N ′
1 + N ′

2 = N . This leads to another balance condition

µ(T ; V1, N1) = µ(T ; V2, N2), (2.11)

where

µ(T ; V, N ) = ∂ F(T ; V, N )

∂ N
(2.12)

is the chemical potential.
To get a better insight about the chemical potential, and to motivate our main

definition of the chemical potential for SST (see Sec. 5.2), suppose that we apply
a potential which is equal to u1 in the subsystem with volume V1 and is equal
to u2 in that with volume V2. Since the addition of a uniform potential u simply
changes the free energy F(T ; V, N ) to F(T ; V, N ) + uN , the variational relation
in this case becomes

F(T ; V1, N1) + u1 N1 + F(T ; V2, N2) + u2 N2

= min
N ′

1,N ′
2

(N ′
1+N ′

2=N )

{F(T ; V1, N ′
1) + u1 N ′

1 + F(T ; V2, N ′
2) + u2 N ′

2}. (2.13)

Then the corresponding balance condition becomes

µ(T ; V1, N1) + u1 = µ(T ; V2, N2) + u2 (2.14)

which clearly shows that µ(T ; V, N ) is a kind of potential.16

These examples illustrate a very important role played by intensive quantities
in thermodynamics, which role will be crucial to our construction of SST. Suppose

15 More precisely, the free energy is defined so that to ensure this coincidence.
16 Note that µ(T ; V, N ) is here defined by (2.12). It is also useful to consider the “electrochemical

potential” µ̃u (T ; V, N ) = µ(T ; V, N ) + u, but we do not use it here.
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in general that one has an extensive variable (V or N in the present case) in the
parameterization of states. Also suppose that two states are in touch with each
other, and each of them are allowed to change this extensive variable under the
constraint (like V ′

1 + V ′
2 = V or N ′

1 + N ′
2 = N ) that the sum of the extensive

variables is fixed. Then there exists an intensive quantity (like p or µ) which is
conjugate to the extensive variable in question, and the condition for the two states
to balance with each other is represented by the equality (like (2.9) or (2.11))
of the intensive quantity. The product of the original extensive variable and the
conjugate intensive variable always has the dimension of energy.

Finally we write down some of the useful relations which involve the pressure
and the chemical potential. From the extensivity (2.4) of the free energy, one gets
the Euler equation

F(T ; V, N ) = −V p(T ; V, N ) + N µ(T ; V, N ). (2.15)

From the definitions (2.8) and (2.12), one gets

∂p(T ; V, N )

∂ N
= −∂µ(T ; V, N )

∂V
, (2.16)

which is one of the Maxwell relations. Since the pressure and the chemical po-
tential are intensive,17 one may define p(T, ρ) = p(T ; 1, N/V ) = p(T ; V, N ) and
µ(T, ρ) = µ(T ; 1, N/V ) = µ(T ; V, N ) with ρ = N/V . Then the Maxwell relation
(2.16) becomes

∂p(T, ρ)

∂ρ
= ρ

∂µ(T, ρ)

∂ρ
. (2.17)

2.2. Statistical Mechanics

Suppose that we are able to describe a macroscopic physical system using a
microscopic dynamics.18 Let S be the set of all possible microscopic states of the
system. For simplicity we assume that S is a finite set. The system is characterized
by the Hamiltonian H (·), which is a real valued function on S. For a state s ∈ S,
H (s) represents its energy.

The essential assertion of equilibrium statistical mechanics is that macro-
scopic properties of an equilibrium state can be reproduced by certain probabilistic
models. An important example of such probabilistic models is the canonical dis-

17 p(T ; λV, λN ) = p(T ; V, N ) and µ(T ; λV, λN ) = µ(T ; V, N ) for any λ > 0.
18 The description may not be ultimately microscopic. A necessary requirement is that one can write

down a reasonable microscopic Hamiltonian.
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tribution in which the probability of finding the system in a state s ∈ S is given by

peq(s) = e−β H (s)

Z (β)
, (2.18)

where β = (kBT )−1 is the inverse temperature, and

Z (β) =
∑
s∈S

e−β H (s) (2.19)

is the partition function. Moreover if we define the free energy as

F(β) = − 1

β
log Z (β), (2.20)

it satisfies all the static properties of the free energy in thermodynamics, including
the convexity, and the variation properties.

The formula (2.6) about density fluctuation holds automatically in the canon-
ical formalism. Let us see the derivation. Consider a system describing a fluid, and
denote by SN the state space when there are N molecules in the system. We de-
fine Z N (β) = ∑

s∈SN
e−β H (s) and F(β, N ) = −(1/β) log Z N (β). Consider a new

system obtained by weakly coupling two identical copies of the above system, and
suppose that the total number of molecules is fixed to 2N . Then the probability of
finding a pair of states (s, s ′) with s ∈ SN1 , s ′ ∈ SN2 , and N1 + N2 = 2N is

peq(s, s ′) = e−β{H (s)+H (s ′)}

Z tot(β)
, (2.21)

where Z tot(β) is the partition function of the whole system. Then the probability
p̃(N1, N2) of finding N1 and N2 molecules in the first and the second systems,
respectively, is

p̃(N1, N2) =
∑

s∈SN1

s ′∈SN2

peq(s, s ′)

= Z N1 (β) Z N2 (β)

Z tot(β)

= exp[−β{F(β, N1) + F(β, N2) − Ftot(β)}], (2.22)

which is nothing but the desired formula (2.6).

2.3. Markov Processes

Although statistical mechanics reproduces static aspects of thermodynamics,
it does not deal with dynamic properties such as the approach to equilibrium
and the second law. To investigate these points from microscopic (deterministic)
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dynamics is indeed a very difficult problem, whose understanding is still poor.
For some of the known results, see, for example. Refs. 77–79). If we become
less ambitious and start from effective stochastic models, then we have rather
satisfactory understanding of these points.

2.3.1. Definition of a General Markov Process

Again let S be the set of all microscopic states in a physical system. A
Markov process on S is defined by specifying transition rates c(s → s ′) ≥ 0 for
all s �= s ′ ∈ S. The transition rate c(s → s ′) is the rate (i.e., the probability divided
by the time span) that the system changes its state from s to s ′.

Let pt (s) be the probability distribution at time t . Then its time evolution is
governed by the master equation,

d

dt
pt (s) =

∑
s ′∈S
(s ′ �=s)

{−c(s → s ′) pt (s) + c(s ′ → s) pt (s
′)}, (2.23)

for any s ∈ S.
A Markov process is said to be ergodic if all the states are “connected” by

nonvanishing transition rates.19 In an ergodic Markov process, it is known that
the probability distribution pt (s) with an arbitrary initial condition converges to
a unique stationary distribution p∞(s) > 0. Then from the master Eq. (2.23), one
finds that the stationary distribution is characterized by the equation

∑
s ′∈S
(s ′ �=s)

{−c(s → s ′) p∞(s) + c(s ′ → s) p∞(s ′)} = 0, (2.24)

for any s ∈ S. See, for example Ref. 80.

2.3.2. Detailed Balance Condition

The convergence to a unique stationary distribution suggests that, if one
wishes to model a dynamics around equilibrium, one should build a model so that
the stationary distribution p∞(s) coincides with the canonical distribution peq(s)
of (2.18). A sufficient (but far from being necessary) condition for this to be the
case is that the transition rates satisfy

c(s → s ′) peq(s) = c(s ′ → s) peq(s ′) (2.25)

19 More precisely, for any s, s′ ∈ S, one can find a finite sequence s1, s2, . . . , sn ∈ S such that s1 = s,
sn = s′, and c(s j → s j+1) �= 0 for any j = 1, 2, . . . , n − 1.
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for an arbitrary pair s �= s ′ ∈ S. By substituting (2.25) into (2.24), one finds
that each summand vanishes and (2.24) is indeed satisfied with p∞(s) = peq(s).
The equality (2.25) is called the detailed balance condition with respect to the
distribution peq(s).

Today one always assumes the detailed balance condition (2.25) when study-
ing dynamics around equilibrium using a Markov process. This convention is
based on a deep reason, which was originally pointed out by Onsager,(7,8) that
such models automatically satisfy macroscopic symmetry known as “reciprocity.”
See Sec. 1.3.1.

By substituting the formula (2.18) of the canonical distribution into the
condition (2.25), it is rewritten as

c(s → s ′)
c(s ′ → s)

= exp[β{H (s) − H (s ′)}], (2.26)

for any s �= s ′ such that c(s → s ′) �= 0. Usually the condition (2.26) is also called
the detailed balance condition. A standard example of transition rates satisfying
(2.26) is

c(s → s ′) = a(s, s ′) φ(β{H (s ′) − H (s)}), (2.27)

where a(s, s ′) = a(s ′, s) ≥ 0 are arbitrary weights which ensure the ergodicity,20

and φ(h) is a function which satisfies

φ(h) = e−h φ(−h), (2.28)

for any h. The standard choices of φ(h) are i) the exponential rule with
φ(h) = e−h/2, ii) the heat bath (or Kawasaki) rule with φ(h) = (1 + eh)−1, and
iii) the Metropolis rule with φ(h) = 1 if h ≤ 0 and φ(h) = e−h if h ≥ 0. In equi-
librium dynamics, these (and other) rules can be used rather arbitrarily depending
on one’s taste. But it has been realized these days(44,81) that the choice of rule cru-
cially modifies the nature of the stationary state if one considers nonequilibrium
dynamics. Indeed we will see a drastic example in Sec. B.8 in the Appendix.

2.3.3. The Second Law

To study the minimum work principle (2.5), we must theoretically formulate
mechanical operations by an outside agent. When the agent moves a wall of
the container, she is essentially changing the potential energy profile for the fluid
molecules. We therefore consider a Hamiltonian H (α)(s) with an additional control
parameter α, and let c(α)(s → s ′) be transition rates whose stationary distribution

20 A simple choice is to set a(s, s′) = 1 if s′ can be “directly reached” from s, and a(s, s′) = 0 otherwise.
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is the canonical distribution21

p(α)
eq (s) = 1

Z (α)(β)
exp[−β H (α)(s)]. (2.29)

Suppose that the agent changes this parameter according to a prefixed (ar-
bitrary) function22 α(t) with 0 ≤ t ≤ tf . (tf is the time at which the operation
ends.) Since the Hamiltonian H (α(t))(s) is now time-dependent, the transition rates
c(α(t))(s → s ′) also become time-dependent.

To mimic the situation in thermodynamics, we assume that, at time t = 0,
the probability distribution coincides with the equilibrium state for α = α(0), i.e.,
we set p0(s) = p(α(0))

eq (s). The probability distribution pt (s) for 0 ≤ t ≤ tf is the
solution of the time-dependent master equation

d

dt
pt (s) =

∑
s ′∈S
(s ′ �=s)

{ − c(α(t))(s → s ′) pt (s) + c(α(t))(s ′ → s) pt (s
′)
}
, (2.30)

which is simply obtained by substituting the time-dependent transition rates into
the master Eq. (2.23). Let us denote the average over the distribution pt (s) as

〈g(s)〉t =
∑
s∈S

g(s) pt (s), (2.31)

where g(s) is an arbitrary function on S.
Now, in a general time-dependent Markov process, a theorem sometimes

called the “second law” is known23 such a theorem was first proved by Yosida.
See XIII-3 of Ref. 83. We shall describe it carefully in the Appendix C. The
theorem readily applies to the present situation, where the key quantity defined in
(C.2) becomes

ϕ(α)(s) = − log p(α)
eq (s) = β

{
H (α)(s) − F(β, α)

}
, (2.32)

with

F(β, α) = − 1

β
log

∑
s∈S

exp
[ − β H (α)(s)

]
(2.33)

21 As an example, one replaces H (s) in (2.27) with H (α)(s).
22 Here we are not including any feedback from the system to the agent. (The agent does what she had

decided to do, whatever the reaction of the system is.) To include the effects of feedback seems to
be a highly nontrivial problem.

23 According to Ref. 82.
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being the free energy with the parameter α. Then the basic inequality (C.5)
implies that, for any differentiable function α(t), one has

∫ tf

0
dt

dα(t)

dt

〈
d

dα
Hα(s)

∣∣∣∣
α=α(t)

〉
t

≥ F(β, α(tf )) − F(β, α(0)). (2.34)

Let us claim that the left-hand side of (2.34) is precisely the total mechanical
work done by the external agent. Consider a change from time t to t + �t , where
�t is small. The change of the Hamiltonian is �H (s) = Hα(t+�t)(s) − Hα(t)(s).
Since the agent directly modifies the Hamiltonian, the work done by the agent
between t and t + �t is equal to24 〈�H (s)〉t + O((�t)2). By summing this up
(and letting �t → 0), we get the left-hand side of (2.34). With this interpretation,
the general inequality (2.34) is nothing but the minimum work principle (2.5).

3. NOEQUILIBRIUM STEADY STATES

AND LOCAL STEADY STATES

Equilibrium thermodynamics, equilibrium statistical mechanics, and Markov
process description of equilibrium dynamics, which we reviewed briefly in Sec. 2
are universal theoretical frameworks that apply to equilibrium states of arbitrary
macroscopic physical systems. As we have discussed in Sec. 1.1, our goal in the
present paper is to construct such a universal thermodynamics that applies to
nonequilibrium steady states.

In the present section, we shall make clear the class of systems that we study,
and describe their nonequilibrium steady states (Sec. 3.1). We then discuss the
important notion of local steady state (Sec. 3.2).

3.1. Nonequilibrium Steady States

A macroscopic physical system is in a nonequilibrium steady state if it shows
no macroscopically observable changes while constantly exchanging energy with
the environment.

Although our aim is to construct a universally applicable theory, it is useful
(or even necessary) to work in concrete settings. Let us describe typical examples
that we shall study in the present paper.

3.1.1. Heat Conduction

The first example is heat conduction in a fluid. Suppose that a fluid consisting
of a single substance is contained in a cylindrical container as in Fig. 4. The upper

24 Note that this is different from 〈Hα(t+�t)(s)〉t+�t − 〈Hα(t)(s)〉t . The difference is nothing but the
energy exchanged as “heat.”
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J

Thigh

Tlow

Fig. 4. The upper and the lower walls have temperatures Tlow and Thigh, respectively. In the nonequi-
librium steady state, the fluid in the container carries a steady heat current in the vertical direction. We
assume that there is no convection.

and the lower walls of the cylinder are kept at constant temperatures Tlow and Thigh,
respectively, with the aid of external heat baths. The side walls of the container
are perfectly adiabatic.

If the system is kept in this setting for a sufficiently long time, it will finally
reach a steady state without any macroscopically observable changes. We assume
that convection does not take place, so there is no net flow in the fluid. But there
is a constant heat current from the lower wall to the upper wall, which constantly
carries energy from one heat bath to the other. This is a typical nonequilibrium
steady state.

3.1.2. Shear Flow

The second example is a fluid under shear. Consider a fluid in a box shaped
container whose upper and lower walls are made of a “sticky” material. The upper

τ
T

τ

Γ

0

Fig. 5. There is a fluid between two “sticky” horizontal walls. The upper wall moves with a constant
speed � while the lower wall is at rest. In the nonequilibrium steady state, the fluid develops a velocity
gradient. The forces that the upper and the lower walls exert on fluid are exactly opposite with each
other.
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T

Fig. 6. An electrically conducting fluid attached to a heat bath is put in a uniform electric field. In a
steady state one has a constant electric current. Joule heat generated in the fluid is absorbed by the heat
bath.

wall moves with a constant speed � while the lower wall is at rest.25 We assume
that the fluid is in touch with a heat bath at constant temperature T . Since the
moving wall does a positive work on the fluid, the fluid must constantly throw
energy away to the bath in order not to heat up.

If we keep the system in this setting for a sufficiently long time, it finally
reaches a steady state in which the fluid moves horizontally with varying speeds
as in Fig. 5. The wall constantly injects energy into the system as a mechanical
work while the fluid releases energy to the heat bath. This is another typical
nonequilibrium steady state.

Since the fluid gets no acceleration in a steady state, the total force exerted on
the whole fluid must be vanishing. This means that the forces that the upper and
the lower walls exert on the fluid are exactly opposite with each other. The same
argument, when applied to an arbitrary region in the fluid, leads to the well-known
fact that the shear stress, defined as the flux of horizontal momentum in the vertical
direction, is constant everywhere in the sheared fluid.

3.1.3. Electrical Conduction in a Fluid

The third example is electrical conduction in a fluid as in Fig. 6. When a
constant electric field is applied to a conducting fluid which is in touch with a heat
bath at a constant temperature, there appears a steady electric current. It should
be noted that the electric field does not generate particle flow in the fluid, but only
generates a flow of electric carriers.26 Since a normal conductor always generates
Joule heat, there is a constant flow of energy to the heat bath. This is also a typical
nonequilibrium steady state.

25 One should device a proper geometry (periodic boundary conditions) to make it possible for the
upper wall to keep on moving.

26 There must be a mechanism to move the carrier from one plate to the other so that to maintain a
steady current. When the carrier is electron, this is simply done by using a battery as in Fig. 6.
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3.2. Local Steady State

Let us discuss the notion of local steady state which is central to our study.
To be concrete let us concentrate on the case of heat conduction in a fluid

(Sec. 3.1.1). In general the local temperature and the local density of the fluid
vary continuously as functions of the position.27 If one looks at a sufficiently
small portion of the fluid, however, both the temperature T and the density ρ are
essentially constants.

In the standard treatment of weakly nonequilibrium systems (see Sec. 1.3.1),
one assumes that the state within the small portion can be regarded as the equi-
librium state with the same T and ρ. Then the whole nonequilibrium state with
varying temperature and density is constructed by “patching” together these local
steady states.

In general situations where the system is not necessarily close to equilibrium,
however, this treatment is not sufficient. No matter how small the portion may be,
there always exists a finite heat flux going through it. Therefore the local state in
this small portion cannot be isotropic. Since equilibrium states are always isotropic
in a fluid, this means that the local state cannot be treated as a local equilibrium
state. It should be treated rather as a local steady state.

A local steady state is in general anisotropic. It is characterized by the tem-
perature T , the density ρ, and (at least) one additional parameter (which we do
not yet specify) which measures the “degree of nonequilibrium.” Macroscopic
quantities of the heat conducting fluid, such as the pressure, viscosity, and heat
conductivity, should in principle depend not only on T and ρ but also on the
additional nonequilibrium parameter. The main goal of our work is to present a
thermodynamics that applies to local steady states.28

3.3. Realization of Local Steady States

As a next step we discuss how one can realize local steady states in each of
the concrete examples.

3.3.1. Heat Conduction

Consider again heat conduction in a fluid. Suppose that the system has a
nice symmetry and we get a steady state which is transitionally invariant in the

27 Although the density is defined unambiguously in any situation, the definition of temperature is
much more delicate. Here we simply assume that the local temperature can be measured by a small
thermometer. We will discuss more about the definition of temperature in Sec. 8.3.1.

28 As a next step, one wishes to see how these local steady states can be “patched” together to form a
global nonequilibrium steady state. We hope this will be a topic of our future works.
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J

Thigh

Tlow
(a)

JT

(b) (c)

J

T

T+∆T

Fig. 7. Local steady state for heat conduction. (a) There is a temperature gradient and heat flux in the
vertical direction. (b) If one concentrates on a thin region of the system, the temperature T and the
density are essentially constant. This is a local steady state. (c) We further assume that the same local
steady state can be realized in a thin system by adjusting the temperature of the upper and the lower
walls.

horizontal directions. The heat flux flows in the vertical direction as in Fig. 7(a).
We let the heat flux J be the total amount of heat that passes through an arbitrary
horizontal plane in the fluid within a unit time. Note that the heat flux J is
independent of the choice of the plane because of the energy conservation.

Take a region in the fluid in between two (fictitious) horizontal planes. If the
width of the region is sufficiently small, the temperature and the density in the
region may be regarded as constant. This thin system realizes a local steady state
for heat conduction as in Fig. 7(b).

Suppose that one inserts into the fluid a horizontal wall with very efficient
thermal conductivity and negligible thickness. Since there is no macroscopic flow
of fluid to begin with, and the temperature is constant on any horizontal plane,
it is expected that the insertion of the wall does not cause any macroscopically
observable changes.29 Then one can replace the two (fictitious) planes that deter-
mine the thin region with two conducting horizontal walls without making any
macroscopic changes. Moreover, by connecting the two walls to heat baths with
precise temperatures, one can “cut out” the thin region from the rest of the system
as in Fig. 7(c). In this manner we can realize a local steady state in an isolated
form.

29 This statement is not as obvious as it first seems. In reality there often appears a seemingly discon-
tinuous temperature jump between a fluid and a wall. Our assumption relies on an expectation that
this jump can be made negligibly small by using a wall made of a suitable material with a suitable
surface condition.
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3.3.2. Shear Flow

In the case of sheared fluid (Sec. 3.1.2) identification of a local steady state
is (at least conceptually) much easier. If the contact with the heat bath is efficient
enough, one may regard that the whole system has a uniform temperature. If this
is the case, the state of the whole system is itself a local steady state.

When the temperature difference within the fluid is not negligible, one may
again focus on a thin region to get a local steady state. The technique of inserting
thin walls can be used in this situation as well. We here use a sticky wall with a
negligible width and insert it horizontally in such a way that it has precisely the
same velocity as the fluid around it. We can then isolate a local steady state.30

3.3.3. Electrical Conduction in a Fluid

The case of electrical conduction in a fluid (Sec. 3.1.3) can be treated in
a similar manner as the previous two examples. If there are variations in the
temperature or the density, we again restrict ourselves to a thin horizontal region
to get a local steady state. When electrons carry current, an electrically conducting
thin wall with a precisely fixed electric potential may be inserted to the fluid without
changing macroscopic behavior.

4. BASIC FRAMEWORK OF STEADY STATE THERMODYNAMICS

As a first step of the construction of steady state thermodynamics (SST),
we carefully examine basic operations to local steady states (Sec. 4.1). Then we
discuss how we should choose nonequilibrium thermodynamic variables (Sec. 4.2).
To make the discussions concrete, we first restrict ourselves to the case of heat
conduction. Other cases are treated separately (Secs. 4.3 and 4.4).

4.1. Operations to Local Steady States

As we saw in Sec. 2.1, various operations (i.e., decomposition, combination,
and scaling) on equilibrium states are essential building blocks of equilibrium ther-
modynamics. We shall now examine how these operations should be generalized
to nonequilibrium steady states. This is not at all a trivial task since nonequilibrium
steady states are inevitably anisotropic, and there is a steady flow of energy going
through it.

30 When there is a temperature gradient, one gets a local steady state with a heat current as well as a
shear. We here assume that the latter has a dominant effect.
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Fig. 8. Two possible ways (b), (c) to decompose a heat conducting steady state (a). Both the ways are
theoretically sensible.

We examine the case of steady heat conduction in a fluid. In order to find
general structures of steady states, we examine a heat conducting state between
the temperatures Tlow and Thigh (Fig. 8(a)). We still do not take the limit of local
steady states.

There are two natural (and theoretical sensible) ways of decomposing the
steady state. In the first way, one inserts a thin horizontal wall with efficient heat
conduction as in Sec. 3.3.1. Then one measures the temperature of the wall (which
we call Tmid) and attach the wall to a heat bath with the same temperature Tmid.
We expect that these procedures do not cause any macroscopically observable
changes. Finally one splits the middle wall into two, and gets the situation in
Fig. 8(b), where one has two steady states. In the second way, which is much
more straightforward, one simply inserts a thin adiabatic wall vertically to split
the system into two as in Fig. 8(c). One can of course revert these procedures, and
combine the two states to get the original one.

We next examine how one should combine two heat conducting states which
have different densities (or which contain different kinds of fluids). One natural
way is a combination in the vertical direction. We prepare two heat conducting
states between Tlow and Tmid and between Tmid and Thigh. The two systems have the
same horizontal cross sections. We then attach the two walls with the temperature
Tmid together as in Fig. 9(a). If the two states have exactly the same heat flux J ,
there is no heat flow between the middle wall and the heat bath with Tmid. This
means that we can simply disconnect this heat bath without making any changes
to the combined steady states. This way of combining two steady states always
works provided that the temperatures at the attached walls are the same (which is
Tmid) and the heat flux J in the two states are identical with each other. We can
regard this as a natural extension of the combination of two states frequently used
in equilibrium thermodynamics.
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Fig. 9. Two possible ways of combining two heat conducting states which have different densities.
(a) Contact through a horizontal wall does not change the two states as long as the temperatures at the
attached walls (denoted as Tmid) coincide and the heat flux J in the two states are identical. (b) Contact
through a conducting vertical wall may inevitably lead to a modification of the heat flow pattern. We
are therefore led to consider only the vertical combination/decomposition scheme (a).

As in the decomposition scheme, we can also think about combinations in
the horizontal direction. We can put two heat conducting states together along a
vertical heat conducting wall as in Fig. 9(b). This combination scheme too may
look reasonable at first glance. But note that the contact always modifies the heat
flux pattern unless the vertical temperature profiles of the two states before the
contact are exactly identical. Since two different fluids (or fluid in two different
densities) generally develop different (nonlinear) temperature profiles, we must
conclude that in general this horizontal contact modifies the two states. It therefore
cannot be used as a combination scheme in thermodynamics.31

In conclusion, the decomposition/combination in the vertical direction (in
which one separates a system, or puts two systems together along a horizontal
plane) works in any situation, while that in the horizontal direction is less robust.
The advantage of the former scheme is that it relies only on a conservation law that
is independent of thermodynamics. More precisely the constancy of the heat flux
J is guaranteed by the energy conservation law and the steadiness of the states.
We are therefore led to a conclusion that, in nonequilibrium steady states for heat
conduction, the decomposition and combination of states should be done in the

31 If the temperature profiles are always linear, then one can say that the two profiles with the same
terminal temperatures are identical. One might think this is always the case in local steady states
realized in very thin systems. But we point out that, no matter how thin a system may be, there can
be a phase coexistence in it, which leads to a nonlinear temperature profile. Therefore the horizontal
combination scheme in heat conduction may be useful only when one (i) restricts oneself to local
steady states, and (ii) rules out the possibility of phase coexistence. We still do not know if we can
construct a meaningful thermodynamics starting from this observation.
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Fig. 10. Scaling in a local steady state of a heat conducting fluid. We fix the horizontal cross section and
scale only in the vertical direction by a factor λ > 0. The height h (and hence the volume), the amount
of substance N , and the (small) temperature difference �T are scaled by λ, while the temperature T
and the heat flux J are unchanged.

vertical direction using horizontal planes, keeping the horizontal cross section
constant. See, again, Figs. 8(b) and 9(a).

For a local steady state, which is defined on a sufficiently thin system, one can
define a scaling operation. Following the decomposition/combination scheme, we
shall fix the cross section of the system and scale only in the vertical direction.32

When doing this we must carefully chose the (small) temperature difference so
that the heat flux J is kept constant. See Fig. 10.

4.2. Choice of Nonequilibrium Variables

We now turn to the problem of describing local steady states in a qualitative
manner. The main issue here is how one should choose a new thermodynamic
variable representing the “degree of nonequilibrium.” Rather surprisingly, we will
see that, by assuming that a reasonable thermodynamics exists, we can determine
the nonequilibrium variable almost uniquely.

Let us again use the heat conduction as an example, and take a sufficiently
thin system to realize a local steady state. To characterize the local steady state,
we definitely need the temperature T , the volume V , and the amount of substance
N . Note that we only need a single temperature T since a local steady state has
an essentially constant temperature. In addition to these three variables, we need
a “nonequilibrium variable” as we discussed in Sec. 3.2.

When choosing the nonequilibrium variable, we first postulate that the
variable should correspond to a physically “natural” quantity. Then, in a local
steady state for heat conduction, there are essentially two candidates. One is the
heat flux J , which is the total energy that passes through any horizontal plane

32 The scaling factor λ should not bee too large to keep the state a local steady state.
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Fig. 11. A local steady state with heat conduction is separated into lower and upper parts (with the
volumes and the amounts of fluid equal to V1, V2, and N1, N2, respectively) by a thermally conducting
horizontal wall. The temperatures T and T + �T of the lower and the upper walls, respectively, are
fixed. We want to determine the temperature T + �T ∗ at the separating wall.

within a unit time. The other is the temperature difference �T between the upper
and the lower walls.33

To see the characters of these nonequilibrium variables, we examine the
scaling transformation of the local steady state (Fig. 10). When the system is
scaled by a factor λ > 0 in the vertical direction, the extensive variables V and
N are scaled to become λV and λN , respectively, while the intensive variable T
is unchanged. The heat flux J is is unchanged because we want to keep the local
state unchanged. (More formally speaking, it is our convention, which followed
almost inevitably from the considerations in Sec. 4.1, to keep J constant when
extending the system in the vertical direction.) The temperature difference �T ,
on the other hand, must be scaled to λ�T in order to maintain the same heat flux.
Therefore, within our convention of scaling, the nonequilibrium variable J acts as
an intensive variable while �T acts as an extensive variable.

Thus our parameterization of a local steady state can either be34 (T, J ; V, N )
or (T ; V, N ,�T ). We wish to examine whether we can get consistent thermody-
namics by using these parameterizations.

We first argue that a thermodynamics with the parameterization (T ; V, N ,

�T ) is inconsistent, or, to say the least, not useful. To demonstrate this we consider
the situation in Fig. 11, where a single fluid of volume V is separated into two parts
by a horizontal wall. The volumes and the amounts of fluid in the lower and upper
parts are fixed to V1, V2, and N1, N2, respectively. The separating wall is thermally
conducting. The upper and the lower walls are fixed, and have fixed temperatures
T + �T and T , respectively, where �T 
 T . The temperature T + �T ∗ at the
separating wall is not fixed, but should be uniquely determined in the steady state.

33 We have assumed that the temperature in a local steady state is essentially constant. But there must
be a nonvanishing temperature difference �T to maintain the heat conduction. Of course we have
�T 
 T .

34 Recall the notation to separate intensive and extensive variables by a semicolon. See Sec. 2.1.1.
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Let us note that the situation here is completely analogous to those we have
seen in Sec. 2.1.3. (See, in particular, the discussion at the end of the section.)
Here the temperature difference in the lower part (i.e., the difference between
the temperatures of the lower wall and the separating wall) is �T1 = �T ∗, while
that in the upper part is �T2 = �T − �T ∗. Since �T is fixed, their sum �T1 +
�T2 is fixed. Let us assume that the general structure of thermodynamics is
maintained here. Then there should be an intensive quantity ν(T ; V, N ,�T ) which
is conjugate to �T , and �T ∗ should be determined by the balance condition

ν(T ; V1, N1,�T ∗) = ν(T ; V2, N2,�T − �T ∗). (4.1)

We know, on the other hand, that the balance of heat flux between two subsystems
can be universally expressed by the equality

J (T ; V1, N1,�T ∗) = J (T ; V2, N2,�T − �T ∗), (4.2)

where J (T ; V, N ,�T ) is the heat flux written as a function of T , V , N , and �T .
Since the two conditions (4.1) and (4.2) should be equivalent for each T , there
must be a function g(J, T ) such that

ν(T ; V, N ,�T ) = g(J (T ; V, N ,�T ), T ), (4.3)

for any T , V , N , and �T . But note here that the quantity ν (which is conjugate
to δT ) is dimensionless35 while the heat flux J has the dimension of energy
divided by time. This means that the function g(J, T ) must include (at least) one
universal constant which has the dimension of time.36 But it is quite unlikely
(if not impossible) that a theory requires such a new universal constant. We must
conclude that a thermodynamics with the parameterization (T ; V, N ,�T ) of local
steady states (even if it exists) is highly unnatural.

On the other hand, a thermodynamics with the parameterization (T, J ; V, N )
does not suffer from such a pathology. Here the “degree of nonequilibrium”
is directly taken into account through the intensive variable J , which directly
accounts for the energy conservation law. Since the role of an intensive variable
in thermodynamics is to set the environment for the system, there is no room for
internal inconsistencies to appear.

We are therefore led to the conclusion that a heat conducting local steady
state should be parameterized as (T, J ; V, N ), where the nonequilibrium variable
J is intensive.37

The general lesson is as follows. To get a sensible thermodynamics, the
“degree of nonequilibrium” should be taken into account through an intensive
variable which manifestly represents a conservation law that is imposed by physical

35 Our convention is that temperature has the dimension of energy.
36 For example, g(J, T ) = t0 J/T is dimensionless when t0 is a constant with the dimension of time.
37 There is a possibility that a natural thermodynamic variable is a function ψ(J ) rather than J itself.

See footnote 44 in Sec. 7.3.



Steady State Thermodynamics 165

Fig. 12. Decomposition of a steady state of sheared fluid. One inserts a thin horizontal wall with the
precise velocity �′ as in (b). By splitting the two parts and Galilei transforming the upper system,
one gets the situation in (c). Note that the shear force τ is preserved in this decomposition. When
combining two states, one starts from (c) and goes back to (b).

laws out of thermodynamics. An extensive nonequilibrium variable which looks
natural from a physical point of view may not be natural for a thermodynamic
theory. This is because the corresponding variational principle may conflict (or
may become redundant) with the already existing conservation law.

4.3. Shear Flow

Let us examine how the discussions in Secs. 4.1 and 4.2 should be extended
to local steady states of a sheared fluid.

Let us start from the decomposition/combination scheme. If the fluid is two-
dimensional (as in Fig. 5), then it is obvious that decomposition and combination
must be done in the vertical direction along a horizontal line. Decomposition of
combination in other directions are simply impossible because of the horizontal
flow. In a three dimensional fluid, one might first imagine that decomposition in
other directions38 can be used, but it turns out that it is not possible when there
is a phase separation within the system. Anyway it is most natural to stick on a
scheme which does not depend on the dimensionality. We shall always decompose
or combine systems in the vertical direction, along horizontal planes.

To decompose a steady state, one first inserts a thin sticky wall horizontally
in such a way that the velocity of the wall is identical to that of fluid around it.
We expect that this insertion does not modify the state macroscopically. Then one
decomposes the inserted wall into two, and splits the system into two parts. Note
that the shear force τ is preserved in this process. If one wishes to bring both
the states into the standard form (where the lower wall is at rest), one performs a
Galilei transformation to the upper system as in Fig. 12.

38 For example one can think about cutting the system into two along a plane parallel to the page.
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Fig. 13. Two possible schemes of decomposition/combination in a steady state of fluid with electric
current. (a) The first scheme is the same as that for heat conduction if we replace the heat flux J with
the total electric current I . The charge conservation law ensures that the total current I is a “good”
intensive nonequilibrium variable. (b) The second scheme makes use of the fact that the electric
potential difference φ is constant when one splits or combines systems along a plane parallel to the
current. Then φ becomes the intensive nonequilibrium variable.

When one combines two states into one, one first prepares two steady states
(as in Fig. 12(c)) with the identical shear force τ , and then combine them (after a
Galilei transformation) as in Fig. 12(b).

It is then obvious that the shear velocity � (which is the difference between
the velocities of the upper and the lower walls) is the extensive variable, and
the shear force τ is the intensive variable. From an argument parallel to that in
Sec. 4.2, we find that a thermodynamics with the parameterization (T ; V, N , �) is
inappropriate. We shall parameterize local steady states as (T, τ ; V, N ), and look
for a useful thermodynamics.

4.4. Electrical Conduction in a Fluid

Treatment of steady states in an electrically conducting fluid is somewhat
more delicate than the other two examples. It seems that, in some situations, there
are two completely different formulations of thermodynamics, whose relations are
far from obvious (and not yet clear to us).

Obviously it is possible to develop a scheme completely parallel to that for
heat conduction. For this, one simply identifies the total electric current I with the
heat flux J . Then one decomposes, combines, and scales local steady states in the
direction of the current as in Fig. 13(a). In the corresponding thermodynamics,
the total electric current I becomes the intensive nonequilibrium variable. Local
steady states are parameterized as (T, I ; V, N ).

But this is not the only possible thermodynamics. If one can neglect the
effect of charge screening at the walls, then the difference φ in the electric
potential between the two walls is constant. The potential φ is unchanged if
one decomposes the system along a plane parallel to the electric current as in
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Fig. 13(b). We can use the corresponding combination and scaling convention to
construct a thermodynamics, where the electric potential difference φ becomes
the nonequilibrium intensive variable. Local steady states are parameterized as
(T, φ; V, N ).

It is quite interesting that there are two different formulations of thermody-
namics for a single physical system. The two are truly different theories since they
are based on different schemes of scaling. One must note that the two possible
theories can never be related with each other simply, for example, by a Legendre
transformation.

It is an intriguing problem to find the true meaning of the (apparent) possibility
of the two formulations of thermodynamics. In particular it is exciting to find an
“unifying” theory which includes the physics of both the theories, provided that
both the theories are found to be physically meaningful.39

5. OPERATIONAL DETERMINATION

OF THERMODYNAMIC QUANTITIES

In Sec. 4, we have determined the basic structure of steady state thermody-
namics (SST), assuming that a sensible thermodynamics for local steady states
does exist. We now turn to the task of determining thermodynamic quantities. In
doing so, we insist on defining everything through operational procedures which
are (at least in principle) experimentally realizable.

In the present section, we discuss how one can determine the pressure
(Sec. 5.1) and the chemical potential (Sec. 5.2) of a local steady state (T, ν; V, N ),
and further show that these quantities satisfy the Maxwell relation (Sec. 5.3). Here
the variable ν represents a general nonequilibrium intensive variable, and should
be read as J , τ , I , or φ depending on the model that one has in mind. Although
the pressure p(T, ν; V, N ) is fully determined, we here determine only the V ,
N dependence of the chemical potential µ(T, ν; V, N ). Determination of T , ν

dependence will be discussed later in Sec. 7.2.
The construction in the present section is fairly general and does not de-

pend on specific systems. The convention is that when we say “vertical” di-
rection, it means the direction to which we scale our systems. The reader
should simply have in mind, for examples, Figs. 10, 12, and 13, and inter-
pret the word “vertical” in the ordinary sense. Recall that we can think about
two different formulations of thermodynamics for electric conduction in a fluid
(Sec. 4.4).

39 A less interesting possibility is that only one of the two is physically meaningful. (And much less
interesting possibility is that none of them are.)
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p

Fig. 14. To be consistent with our convention of scaling, we measure the (mechanical) pressure in the
vertical direction and identify it as the SST pressure p(T, ν; V, N ).

5.1. Pressure-A Mechanical Definition

Pressure is a special thermodynamic quantity, which also has a purely me-
chanical characterization.40

As usual the pressure of a local steady state is defined as the mechanical
pressure or through the work needed to make a small change of volume. The
only point we have to be careful about is that a nonequilibrium steady state is
anisotropic. Since it is our convention to perform decomposition, combination,
and scaling only in the vertical direction, we shall only speak about the pressure
in the vertical direction. It is obtained as the mechanical pressure exerted on
the horizontal walls, or through the relation �W = p �V where �W is the
mechanical work needed to make a small volume change �V by moving a
horizontal wall vertically. See Fig. 14.

We denote the pressure thus determined as p(T, ν; V, N ). Since the vertical
force should not change when one scales the system in the vertical direction, we
have the intensivity

p(T, ν; λV, λN ) = p(T, ν; V, N ), (5.1)

for any λ > 0 (which is small enough to maintain local steadiness). Note that
in the case of electrical conduction in a fluid, two pressures p(T, I ; V, N ) and
p(T, φ; V, N ) corresponding to the two different formulations of thermodynamics
are in general different.

As in equilibrium, we expect the pressure p(T, ν; V, N ) to be nonincreasing
in V . Otherwise a small fluctuation in the volume may be magnified, leading to a
catastrophic volume change.

40 We can say that equilibrium thermodynamics establishes quantitative connection with mechanics
through the pressure and the internal energy. In our construction of SST, we make use of the pressure.
But it is extremely difficult (if not impossible) to introduce the notion of internal energy to nonequi-
librium steady states since there always is a constant flow of energy. Oono and Paniconi(2) indeed
tried to define internal energy of SST by extending the notion of adiabaticy. In our construction, we
do not make use of adiabaticy.
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5.2. Potential Variation Method and Chemical Potential

In contrast to the pressure, the chemical potential is a purely thermodynamic
quantity. Therefore to define it for local steady states is a highly nontrivial problem.
In the present section, we introduce the method of potential variation, which
enables one to determine the difference in the chemical potential unambiguously.
By using this method, we determine V , N dependence of the chemical potential
in a purely operational manner. To our knowledge this method of determining
chemical potential was first pointed out and used by Hayashi and Sasa.(47)

Fix the temperature T and the nonequilibrium variable ν. We denote by
µ(ρ) = µ(T, ν; V, N ) the chemical potential as a function of the density ρ = N/V .
We have assumed the intensivity

µ(T, ν; λV, λN ) = µ(T, ν; V, N ), (5.2)

for any λ > 0.
Now we apply an external potential which generates a force41 acting on fluid

particles. The potential is equal to a constant u1 in the lower half of the system,
and is equal to u2 in the upper half. We assume that the potential varies smoothly
in the vertical direction between the two regions.

Let the system relax to its steady state under the applied potential. We denote
by ρ1 and ρ2 the densities of the fluid in the lower and the upper regions, respec-
tively. Since the two regions can freely exchange fluid molecules and are in steady
balance with each other, the chemical potential µ(ρ) (if exists) should satisfy the
balance relation

µ(ρ1) + u1 = µ(ρ2) + u2, (5.3)

which is nothing but the nonequilibrium counterpart of the relation (2.14) in
equilibrium thermodynamics. Note that we are again speaking only about contacts
of two regions in the vertical direction. As in the definition of the pressure, all the
notions should be consistent with our convention of scaling.

To be more logical, we are here defining the chemical potential µ(ρ) as
a quantity that satisfies the condition (5.3), under the assumption that (5.3) for
various u1 and u2 lead consistently to a function µ(ρ).

It seems obvious that ρ1 ≥ ρ2 when u1 ≤ u2, since the fluid feels a downward
force in the boundary of the two regions. Then (5.3) implies that the chemical
potential µ(ρ) is a nondecreasing function of the density ρ.

41 In the case of electrically conducting fluid, the present force is not an electric one. We have assumed
that an electric field only affects the electric carriers, while the present potential couples with the
whole fluid.
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5.3. Maxwell Relation

A crucial point in our operational definitions of the pressure and the chemical
potential is that they automatically imply the Maxwell relation

∂p(ρ)

∂ρ
= ρ

∂µ(ρ)

∂ρ
, (5.4)

which is exactly the same as its equilibrium counterpart (2.17). Here we still fix
T , ν, and write p(ρ) = p(T, ν; V, N ) with ρ = N/V .

To show the Maxwell relation (5.4), we again consider the situation in Fig. 15,
where a varying potential is applied to a single fluid. Suppose that �u = u2 − u1 >

0 is small. Let us write densities as ρ1 = ρ and ρ2 = ρ − �ρ. By writing the
density ρ(r ) and the potential u(r ) as a function of the position r , we can evaluate
the total force exerted on the fluid from the potential as

Fu = −
∫

d3r ρ(r ) grad u(r ) = −{ρ + O(�ρ)}
∫

d3r grad u(r )

= −{ρ + O(�ρ)}A �u, (5.5)

where A is the cross section area of the container, and we used the fact that
ρ(r ) = ρ + O(�ρ) everywhere in the fluid. On the other hand, the forces exerted
on the fluid from the upper and lower walls (as pressures) add up to

Fp = A{p(ρ) − p(ρ − �ρ)}. (5.6)

Since the fluid is in a steady state, we must have Fu + Fp = 0, which leads to

p(ρ) − p(ρ − �ρ) = ρ �u + O((�ρ)2). (5.7)

From (5.3), on the other hand, we have

µ(ρ) − µ(ρ − �ρ) = �u. (5.8)

ρ
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2

1

u

u

u

Fig. 15. The method of potential variation which determines the difference in chemical potentials.
An external potential which varies only in the vertical direction is applied. The densities of the fluid
is ρ1 and ρ2 in the lower and the upper regions where the potential takes constant values u1 and u2,
respectively. Then the chemical potential difference is determined by µ(ρ1) + u1 = µ(ρ2) + u2.



Steady State Thermodynamics 171

From (5.7) and (5.8), one readily gets the desired Maxwell relation (5.4) by letting
�u → 0.

6. SST FREE ENERGY AND ITS POSSIBLE ROLES

Since we have discussed the operational definitions of the pressure
p(T, ν; V, N ) and the chemical potential µ(T, ν; V, N ), we can now move on
to the definition of the SST (Helmholtz) free energy F(T, ν; V, N ). After not-
ing the basic properties of the free energy (Sec. 6.1), we discuss two conjectures
about its physical roles, namely, the extension of Einstein’s formula for the density
fluctuation (Sec. 6.2) and the minimum work principle (Sec. 6.3).

As in Sec. 5, discussions in the present section are fairly general, and apply
to any of our examples.

6.1. Definition of Free Energy

Let (T, ν; V, N ) be a local steady state. Since T and ν are intensive, and V
and N are extensive, the extensivity of the free energy (to be defined) should read

F(T, ν; λ V, λ N ) = λ F(T, ν; V, N ), (6.1)

for any λ > 0 (which is small enough to maintain local steadiness). Since this is
identical to its equilibrium counterpart (2.4), we expect our SST free energy to
satisfy the same Euler equation (2.15) as the equilibrium free energy. We therefore
require

F(T, ν; V, N ) = −V p(T, ν; V, N ) + N µ(T, ν; V, N ). (6.2)

Note that this is consistent with the extensivity (6.1) of free energy and the
intensivity (5.1) and (5.2) of the pressure and the chemical potential.

Since we have already determined p(T, ν; V, N ) and (the V , N dependence
of) µ(T, ν; V, N ), we can regard the Euler equation (6.2) as our definition of the
free energy. This determines the V , N dependence of F(T, ν; V, N ) completely
for each fixed (T, ν). Dependence of F(T, ν; V, N ) on T and ν will be discussed
later in Sec. 7.3.

From the Maxwell relation (5.4) (which should better be rewritten in the form
of (2.16)), we find that the free energy defined by (6.2) satisfies

p(T, ν; V, N ) = −∂ F(T, ν; V, N )

∂V
, (6.3)

and

µ(T, ν; V, N ) = ∂ F(T, ν; V, N )

∂ N
, (6.4)

as in the equilibrium thermodynamics (see (2.8) and (2.12)).
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Fig. 16. The setting for discussion the density fluctuation formula (6.9) for nonequilibrium steady
states. The situation is almost the same as that of Fig. 15, but the two parts are now separated by a
horizontal wall with a small window in it.

We can also show that F(T, ν; V, N ) is jointly convex42 in the extensive
variables V and N . To see this, fix T and ν and define the specific free energy by

f (ρ) = F

(
T, ν; 1,

N

V

)
= F(T, ν; V, N )

V
, (6.5)

with ρ = N/V . Then the Euler equation (6.2) becomes

f (ρ) = −p(ρ) + ρ µ(ρ). (6.6)

From this and the Maxwell relation (5.4), we find f ′′(ρ) = µ′(ρ). Since we have
µ′(ρ) ≥ 0 as argued in Sec. 5.2, f (ρ) is convex in ρ, and hence

f

(
κ

N1

V1
+ (1 − κ)

N2

V2

)
≤ κ f

(
N1

V1

)
+ (1 − κ) f

(
N2

V2

)
, (6.7)

for any V1, V2, N1, N2, and 0 ≤ κ ≤ 1. By setting κ = λ V1/{λ V1 + (1 − λ) V2}
with 0 ≤ λ ≤ 1, (6.7) becomes

F(T, ν; λ V1 + (1 − λ) V2, λ N1 + (1 − λ) N2) ≤ λ F(T, ν; V1, N1)

+ (1 − λ) F(T, ν; V2, N2), (6.8)

which shows the desired convexity.

6.2. Density Fluctuation

Although we still do not know T , ν dependence of the free energy
F(T, ν; V, N ), its dependence on V and N may give interesting physical informa-
tion. In the present and the next subsections, we discuss two of such conjectures.

Consider the situation in Fig. 16, where the potential which is equal to u1

in the lower half and equal to u2 in the upper half is applied. This is almost the

42 See footnote 13 in Sec. 2.1.2 for the definition. The following discussion is quite standard.
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same as the situation in Fig. 15, but we separate the two parts by a horizontal wall
with a small (but much larger from the molecular scale) window in it. The wall
is prepared so that the two parts maintain the same “degree of nonequilibrium.”
Since the two parts will reach mechanical and thermodynamic balance via the
window, the densities ρ1 and ρ2 in the steady state is the same as that attained in
the situation of Fig. 15.

In the average, the amounts of fluid in the two parts are equal to ρ1V and ρ2V ,
respectively, where V is the volume of each part. As long as the volume is finite,
however, there exists a fluctuation in the amounts of fluid or in the densities. We
conjecture that this density fluctuation can be described by the SST free energy,
just as in the equilibrium case (2.6). (See also (2.22).) To our knowledge, such a
fluctuation relation in steady states was first proposed by Hayashi and Sasa(47).

To be precise, denote the amounts of substance in the lower and the upper
parts as N1 and N2, respectively. Since the fluid can move through the porous wall,
N1 and N2 may vary while N1 + N2 is exactly conserved. We denote by p̃(N1, N2)
be the probability density for the partition (N1, N2) of the amounts of fluid. Then,
for each steady state with fixed T , ν u1, and u2, it is expected that the Einstein’s
formula

p̃(N1, N2) � const. exp[−β{F(T, ν; V, N1) + F(T, ν; V, N2)

+ u1 N1 + u2 N2}], (6.9)

is valid, where β = 1/(kBT ) is the inverse temperature.
We shall later show that the fluctuation formula (6.9) holds exactly in

the sheared fluid with weak contact (Appendix A.3), and the driven lattice gas
(Appendix B.4).

It is quite important to note that the conjectured relation (6.9) can be checked
by experiments which are independent of those necessary to determine the free
energy F(T, ν; V, N ). Therefore we are proposing a highly nontrivial statement
for general (not necessarily weak) nonequilibrium systems that can be verified (or
falsified) purely by experiments. See Sec. 8.2.1 for further discussions.

Remark 1: When the density fluctuation is governed by the Einstein’s formula (6.9),
it is likely that linear response relations for transport or relaxation phenomena in
the vertical direction are also valid. For example, if one starts from the steady state
with u1 = u2 = 0 and suddenly applies at time t = 0 a weak potential difference
�u = u2 − u1, we expect the fluctuation response relation

〈N̂1(t)〉�u = 〈N̂1〉0 + �u β 〈N̂1 {N̂1(t) − N̂1(0)}〉0 + O((�u)2), (6.10)

for t ≥ 0 to be valid. Here 〈· · ·〉0 is the expectation in the steady state with
u1 = u2 = 0. See Secs. A.4 and B.6 for more details in concrete examples. To
our knowledge, such linear response relations in a highly nonequilibrium steady
state was first discussed in Ref. 84.
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Remark 2: One might naively expect the fluctuation relation (6.9) to hold in the
situation of Fig. 15, where the two parts are separated by a a fictitious horizontal
plane. Although the corresponding relation in equilibrium holds either when the
wall is real or fictitious, the situation may not be that simple in nonequilibrium
steady states. In nonequilibrium steady states, one generally finds spatial long range
correlations, which lead to anomalous density fluctuations.(20) (See Sec. 8.3.2.) It
is likely that a simple Einstein type relation for fluctuation does not hold because
of this anomaly. The contact via a small window considered above is expected to
diminish the long range correlation between the two subsystems, while maintaining
macroscopic balance of the two systems. This is clearly seen in our treatment of
the driven lattice gas in Appendix B.3. See also Appendix B.3.4 for still “safer”
design of the contact.

6.3. Minimum Work Principle

We also conjecture that there exists a steady state version of the minimum
work principle (see Sec. 2.1.2) and that the SST free energy plays a central role in
it.

Let us discuss only the simplest version in the present section. Later in
Appendix B.5 we shall discuss more about the minimum work principle in the
contexts of driven lattice gas.

We conjecture that a straightforward generalization of the inequality (2.5) in
equilibrium holds in a local steady state. However there is a sever restriction on
mechanical operations performed to the system. To be consistent with our basic
framework to change the geometry of the system only in the vertical direction,
we allow the external agent to change the volume of the system only by moving
the upper (or the lower) wall vertically. We require that the intensive variables T
and ν are kept constant during the operation. Then the conjectured minimum work
principle for local steady states is

W ≥ F(T, ν; V ′, N ) − F(T, ν; V, N ), (6.11)

where V and V ′ are the initial and the final volumes, respectively, and W is the
mechanical work that the outside agent has done to the system. It is crucial here
that W is the ordinary mechanical work, not an exotic (and often ill-defined)
quantity like “nonequilibrium work.43 The outside agent need not care whether
the system is in an equilibrium state or in a steady state.

43 In the framework of SST proposed by Oono and Paniconi(2), the conjectured minimum work principle
is expressed in terms of “excess work” which is obtained by subtracting a “house-keeping heat”
from the total mechanical work. Such a decomposition of the work with a generalized second law
was demonstrated in a Langevin model.(85) Quite recently, an identity leading to this generalized
second law was tested experimentally Ref. 86.”
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In the limit where the operation is indefinitely slow, the relation (6.3) for
the pressure implies that the minimum work principle (6.11) is satisfied as an
equality. (This is indeed almost the definition of the pressure.) Then the conjectured
inequality (6.11) looks plausible since we usually have to do extra work when an
operation is not slow enough for the fluid to follow.

We stress that the restriction on allowed operations is essential. Since some
of the nonequilibrium steady states have a macroscopic flow, the agent may make
use of it to reduce her work (or even to get a positive amount of energy from, say,
a waterwheel) if arbitrary operations are allowed. This is in a stark contrast with
the minimum work principle in the equilibrium thermodynamics, where the agent
can perform any mechanical operations allowed by physics laws.

To summarize, our message is that the minimum work principle may be ex-
tended to general nonequilibrium steady states provided that one carefully restricts
allowed operations. We stress that this too is a highly nontrivial conjecture that
can be checked purely by experiments.

7. STEADY STATE THERMODYNAMICS (SST)

IN A COMPLETE FORM

In the present section, we discuss an operational method to determine the
dependence of the chemical potential on T and ν. The basic idea depends on a new
postulate that there are walls (that we call µ-walls) which realize a natural contact
between an equilibrium state and a steady state (Secs. 7.1 and 7.2). This determines
the free energy F(T, ν; V, N ) (Sec. 7.3), and completes our construction of steady
state thermodynamics (SST).

The complete SST leads us to predictions of two new phenomena, namely,
the flux-induced osmosis (FIO) (Secs. 7.4 and 7.5), and a shift of coexistence
temperature (Sec. 7.6). We show that both the phenomena are described by the new
nonequilibrium extensive quantity �(T, ν; V, N ) that we shall introduce. These
two are intrinsically nonequilibrium phenomena that can never be described within
the equilibrium or the local equilibrium treatments.

7.1. Contact of a Steady State and an Equilibrium State

As in Secs. 5 and 6, we treat a general local steady state parameterized as
(T, ν; V, N ).

We shall now think about bringing a local steady state (T, ν; V, N ) in contact
with an equilibrium state (T, 0; V ′, N ′), allowing the two states to slowly exchange
the fluid. To be consistent with the general scheme of SST, we put the two states
together in the vertical direction, separating them with a horizontal wall.

The separating wall should probably be made of a porous material which has
many narrow complicated paths through which the fluid can pass slowly.
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Fig. 17. Combination of a nonequilibrium steady state (lower part) and an equilibrium state (upper part)
in (a) heat conducting fluid, (b) sheared fluid, and (c) electrical conduction in a fluid. The separating
walls are made of a porous material, and fluid can pass to the other sides through narrow complicated
paths. This setting will be the basis for our determination of the chemical potential and the free
energy.

In the case of a heat conducting fluid (Sec. 3.1.1), we suppose that the
porous wall has very high heat conductivity, and is in touch with a heat bath
which has the same temperature T as the upper most wall. See Fig. 17(a).
The lower most wall is kept at a different temperature T + �T . In this man-
ner, we can realize a heat conducting (local) steady state in the lower half of
the system, and an equilibrium state with temperature T in the upper half of the
system.

In the case of a sheared fluid (Sec. 3.1.2), we suppose that porous wall has
“sticky” surfaces and is at rest. See Fig. 17(b). The upper most wall is also at rest,
while the lower most wall moves with the speed �. In this manner, we realize a
(local) steady state with a constant shear in the lower half, and an equilibrium state
in the upper half. We of course assume that the whole system is in an efficient
contact with a heat bath at temperature T .

As for electrical conduction in a fluid (Sec. 3.1.3), we have to be careful. When
we employ the (T, φ; V, N ) formalism of SST (see Fig. 13(b)), it is impossible to
put an equilibrium state on top of a steady state. This is because a steady state in
this setting has a uniform electric field in the horizontal direction in it, while an
equilibrium state has no electric field. Such a configuration is inhibited by the law
of electrostatics, i.e., rot E = 0. We therefore exclude the (T, φ; V, N ) formalism
from our considerations in the present section.

As for the (T, I ; V, N ) formalism of SST for electrical conduction in a fluid
(see Fig. 13(a)), the contact causes no apparent problems. We suppose that the
porous wall is electrically conducting, and let the porous wall and the upper
most wall have the same electric potential. See Fig. 17(c). By letting the the
lower most wall have a different potential, we will get a steady state with a
constant electric current in the lower half, and an equilibrium state in the upper
half. Again the whole system is assumed to be in touch with a heat bath at
temperature T .
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7.2. Complete Determination of the Chemical Potential

Our new (and fundamental) postulate is that, if a steady state (T, ν; V, N )
and an equilibrium state (T, 0; V ′, N ′) are in contact with each other as in Sec. 7.1,
we have the equality

µ(T, ν; V, N ) = µ(T, 0; V ′, N ′). (7.1)

In equilibrium thermodynamics, two systems which exchange substance and are
in balance with each other always have equal chemical potentials. Our postulate
(7.1) is a straight generalization of this principle.

Since µ(T, 0; V ′, N ′) in the right-hand side is the chemical potential of an
equilibrium state, it is fully determined within the equilibrium thermodynamics.
Therefore by preparing the contact between various steady states and equilibrium
states, one can fully determine the SST chemical potential µ(T, ν; V, N ) from the
proposed equality (7.1).

It must be noted, however, that (7.1) is not a mere definition. In Sec. 5.2, we
characterized the chemical potential µ(T, ν; V, N ) using the method of potential
variation, and determined the V , N dependence of µ(T, ν; V, N ) for each fixed T
and ν. The equality (7.1) must reproduce the same V , N dependence.

Therefore what is essential in the postulate (7.1) is the assumption that there
exists a wall which (through (7.1)) gives µ(T, ν; V, N ) consistent with the potential
variation method. Let us call a wall with this property a µ-wall. The existence of
a perfect µ-wall is indeed far from obvious (although it can be established for the
driven lattice gas as we see in Sec. B.7). In fact we will see in Sec. 7.5 that there
are walls which are not µ-walls. The validity of our postulate should ultimately
be verified through series of careful experiments.

We assume that the chemical potential thus defined satisfies the symmetry

µ(T, ν; V, N ) = µ(T,−ν; V, N ). (7.2)

For a sheared fluid this is obvious from the original symmetry (i.e., Galilei in-
variance) of the system. For heat conduction and electrical conduction, we are
assuming that the direction of the current does not affect the contact with equilib-
rium state. This is not entirely obvious, but seems plausible. Similarly we assume
for the pressure that

p(T, ν; V, N ) = p(T,−ν; V, N ). (7.3)

7.3. Complete Determination of the Free Energy

Since we have completely determined the chemical potential µ(T, ν; V, N ),
and the pressure p(T, ν; V, N ), we use the Euler equation (6.2) to fully determine
the free energy F(T, ν; V, N ).
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The free energy F(T, ν; V, N ) thus defined satisfies the extensivity (6.1), is
jointly convex in V and N (as we saw in Sec. 6.1), and has the symmetry

F(T, ν; V, N ) = F(T,−ν; V, N ), (7.4)

because of (7.2) and (7.3). Trusting in robustness of the mathematical structure of
thermodynamics, we further assume that the free energy F(T, ν; V, N ) is concave
in the two intensive variables T and ν. Although it is a general requirement in
thermodynamics that the free energy is concave in an intensive variable, we still
do not know what this assumption really means in the context of nonequilibrium
steady states.44

Assuming the differentiability of F(T, ν; V, N ), we can define (following
equilibrium thermodynamics) the SST entropy

S(T, ν; V, N ) = −∂ F(T, ν; V, N )

∂T
, (7.5)

and a new nonequilibrium extensive quantity

�(T, ν; V, N ) = −∂ F(T, ν; V, N )

∂ν
. (7.6)

Since the symmetry (7.4) implies �(T, ν; V, N ) = −�(T,−ν; V, N ), we find
that �(T, 0; V, N ) = 0 provided that �(T, ν; V, N ) is continuous in ν. Moreover
the assumed concavity of F(T, ν; V, N ) implies

∂�(T, ν; V, N )

∂ν
≥ 0, (7.7)

and hence we have

�(T, ν; V, N )

{ ≥ 0 if ν ≥ 0;
= 0 if ν = 0;
≤ 0 if ν ≤ 0.

(7.8)

Since the inequalities (7.8) suggest that �(T, ν; V, N ) is a kind of measure of
the “degree of nonequilibrium,” we call �(T, ν; V, N ) the nonequilibrium order
parameter.45

44 In equilibrium thermodynamics, the concavity is directly related to the convexity and the variational
principle for the conjugate extensive variable. To find out whether we have similar structure in
SST is one of the important remaining issues. There is a possibility that we should use a monotone
function ψ(ν) of ν as the “correct” intensive nonequilibrium variable to have a meaningful conjugate
extensive variable.

45 As a simple minded analogy, imagine that ν is the external magnetic field of a magnetic system.
Then � becomes the magnetization.
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7.4. Flux Induced Osmosis (FIO)

We continue to study the situation in Fig. 17, where a local steady state
(T, ν; V, N ) and an equilibrium state (T, 0; V ′, N ′) are in contact with each other.
Thus the equality (7.1) between the chemical potentials hold.

Let us think about changing the nonequilibrium control parameter ν slightly
while keeping the temperature T , the volume V , and the equilibrium chemical
potential µeq = µ(T, 0; V ′, N ′) constant. The last condition is met, for example,
by making V ′ and N ′ much larger than V and N , respectively. Since the chemical
potential µ(T, ν; V, N ) must be also constant because of (7.1), the amount of
substance N in the steady state inevitably varies according to ν. In what follows
we write N (ν) instead of N to remind this fact.

By dividing the Euler equation (6.2) by N and using the extensivity (6.1) of
F and the intensivity (5.1), (5.2) of p, µ, we get

F(T, ν; v, 1) = −v p(T, ν; v, 1) + µ(T, ν; v, 1), (7.9)

where v = V/N (ν) is the specific volume. When the nonequilibrium variable
ν is varied, T and µ(T, ν; v, 1) do not change while v may change. Thus by
differentiating (7.9) with respect to ν, we get

−�(T, ν; v, 1) − ∂v

∂ν
p(T, ν; v, 1) = −∂v

∂ν
p(T, ν; v, 1) − v

∂p(T, ν; v, 1)

∂ν
,

(7.10)
where we used (7.6) and (6.3). This implies

∂p(T, ν; V, N (ν))

∂ν
= �(T, ν; V, N (ν))

V
. (7.11)

Since the pressure p(T, ν; V, N (ν)) is equal to the equilibrium pressure pea =
p(T, 0; V ′, N ′) when ν = 0, and the sign of the right-hand side of (7.11) is given
by (7.8), we find that

p(T, ν; V, N (ν)) ≥ peq, (7.12)

in general. For ν �= 0, the inequality is expected to become strict except in trivial
systems where �(T, ν; V, N ) is vanishing.

We thus conclude that there inevitably appears a difference in the pressures of
a nonequilibrium steady state and an equilibrium state which are in contact with
each other and exchanging the fluid. The assumed concavity of the free energy in
the nonequilibrium intensive parameter ν implies that the pressure of the steady
state is always higher. We call this pressure difference the flux-induced osmosis
(FIO).

We stress that the FIO is an intrinsically nonequilibrium phenomenon, which
can never be predicted within the standard local equilibrium approach (see
Sec. 1.3.1). To confirm the existence of a FIO through careful experiments seems
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to be a challenging task, which will shed completely new light on the physics of
nonequilibrium systems. We note, however, that an actual design of experiment
may be nontrivial. See Sec. 8.2.2.

The prediction of FIO in a heat conducting system may be rather surprising
since we assert that a transfer of heat leads to a mechanical force acting on the
porous wall. Let us note, however, that the appearance of mechanical force may not
be too radical at least for dilute gases. In a dilute gas with a nonuniform temperature
profile, it is known from the analysis of the Boltzmann equation that the pressure
tensor becomes anisotropic.(33) It is then possible that a nonequilibrium steady
state and an equilibrium state balance with each other to have different vertical
pressures. In fact Kim and Hayakawa,(35) in their careful reinvestigation of the
Chapman-Enskog expansion, examined a naive contact between a nonequilibrium
steady state and an equilibrium state, and found that the pressure of the steady state
is indeed larger than that of the equilibrium state.46 A recent calculation based on
Enskog’s equation leads to a different conclusion.(87)

7.5. µ-Wall Revisited

Since the existence of a µ-wall inevitably leads to the pressure difference
between the steady state and the equilibrium state, we find that a µ-wall must be
able to support a pressure difference. But clearly there exists a wall (which should
be called a p-wall) which ensures that the pressures on its two sides are identical.
For example, a “wall” made of a network of thin wires may be able to separate
a steady state and an equilibrium state, but cannot support a pressure difference.
In this case, we must conclude that there is a finite difference in the chemical
potentials of the steady state and the equilibrium state, while the pressures are the
same. This is in a sharp contrast with the situation in equilibrium thermodynamics,
where any contact which allows the exchange of fluid keeps the chemical potential
on both sides equal.

We suspect that a perfect µ-wall and a perfect p-wall represent two different
idealized limits of experimentally realizable walls. A general wall separating a
steady state and an equilibrium state is expected to lie between these two limits.
For a non-ideal wall, we still expect to observe a FIO with the same sign, but with
a reduced magnitude.

Let us derive a useful relation which enables one to check if an ideal µ-
wall contact is realized or not. Suppose that a steady state (T, ν; V, N ) and an
equilibrium state (T, 0; V ′, N ′) are separated by a perfect µ-wall and are in
balance with each other. We fix T and ν, and slightly change the density by
varying V or V ′. Since both the steady state pressure pss = p(T, ν; V, N ) and

46 Although they found a FIO with the correct sign, their contact is not a perfect µ-wall since the equality
(7.13) is violated. We still do not know how one should realize a perfect µ-wall in dilute gases.
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p

T ( p,ν)c

Fig. 18. Two phases (say, liquid and vapor) separated by a horizontal plane coexist within a nonequi-
librium steady state. We show that in general the coexistence temperature Tc(p, ν) shifts from its
equilibrium value Tc(p, 0).

the equilibrium pressure peq = p(T, 0; V ′, N ′) satisfy the same Maxwell rela-
tion (2.16) and (5.4), the changes of the pressures satisfy �peq = ρeq �µeq and
�pss = ρss �µss, where �µeq and �µss are the changes in the chemical potentials.
But (7.1) implies�µeq = �µss, and we get

�peq

�pss
= ρeq

ρss
. (7.13)

The equality (7.13) may be checked experimentally to see if an ideal µ-wall is
realized.

7.6. Shift of Coexistence Temperature

Again we consider a single local steady state. Suppose that there coexist two
different phases, say, liquid and vapor, within the local steady state. We assume that
the two phases are separated by a horizontal plane as in Fig. 18. By using standard
techniques in thermodynamics, we derive a nonequilibrium relation corresponding
to the Clausius-Clapeyron relation.

By (fictitiously) splitting the system into two along the phase separation
plane, we get two local steady states in the low and the high temperature phases,
respectively. We denote the local steady states in the low and the high temperature
phases as (T, ν; V−, N−) and (T, ν; V+, N+), respectively.

By dividing the Euler equation (6.2) by N and using the extensivity (6.1) of
F and the intensivity (5.1), (5.2) of p, µ, we get for each phase

F(T, ν; v±, 1) = −v± p(T, ν; v±, 1) + µ(T, ν; v±, 1), (7.14)

where v± = V±/N± are the specific volumes. It is convenient to fix the pres-
sure p = p(T, ν; v−, 1) = p(T, ν; v+, 1) constant. We denote by Tc(p, ν) the
coexistence temperature at fixed p and ν. Since the two phases coexist, we have47

47 One may regard this balance condition as a special case of (5.3).
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µ(T, ν; v−, 1) = µ(T, ν; v+, 1), which, with (7.14), implies

F(Tc(p, ν), ν; v−, 1) + v− p = F(Tc(p, ν), ν; v+, 1) + v+ p. (7.15)

We fix p and differentiate (7.15) with respect to ν. Noting that v± may depend on
ν to keep the pressure constant, we get

−∂Tc(p, ν)

∂ν
S(Tc(p, ν), ν; v−, 1) − �(Tc(p, ν), ν; v−, 1)

= −∂Tc(p, ν)

∂ν
S(Tc(p, ν), ν; v+, 1) − �(Tc(p, ν), ν; v+, 1), (7.16)

where we used the definitions (7.5) and (7.6) of S and �, respectively. We therefore
find the following nonequilibrium relation analogous to the Clausius-Clapeyron
relation

∂Tc(p, ν)

∂ν
= −ψ+ − ψ−

s+ − s−
, (7.17)

where

ψ± = �(Tc(p, ν), ν; V±, N±)

V±
, (7.18)

and

s± = S(Tc(p, ν), ν; V±, N±)

V±
(7.19)

are the specific nonequilibrium order parameter and the specific entropy of the
two phases.

It is crucial to note that the nonequilibrium order parameter ψ± can be
determined by experiments using the FIO of Sec. 7.4. Since the entropy s± may
be approximated by their equilibrium values for small enough ν, the right-hand
side of (7.17) can be evaluated from experiments which do not involve a phase
coexistence. This enables one to check (at least in principle) for the quantitative
validity of the theory of SST in a purely experimental manner.

The concavity of the free energy implies that in general the entropy
S(T, p, ν; N ) is nondecreasing48 in T . Thus we always have s+ ≥ s−, and
expect

s+ − s− > 0, (7.20)

in general. Therefore the sign of the right-hand side of the Clausius-Clapeyron
type relation (7.17) is determined by the sign of ψ+ − ψ−.

48 To show this one Legendre transforms F(T, ν; V, N ) to G(T, p, ν; N ) and use the relation S =
−∂G/∂T as in equilibrium thermodynamics.
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Consider a sheared fluid and suppose that the low temperature phase is a
solid.49 Since the solid phase is hardly affected by the shear, it is likely that ψ− is
negligible. Then the relation (7.17) becomes

∂Tc(p, τ )

∂τ
= − ψ+

s+ − s−
. (7.21)

The sign of the right-hand side of (7.21) is precisely known by (7.8) and (7.20).
We find that

Tc(p, τ ) < Tc(p, 0), (7.22)

in general. Shear always induces melting of a solid. This prediction is consistent
with the recent numerical experiments(88) (where it was argued that the inequality
(7.22) rules out (!) the possibility of a nonequilibrium thermodynamics).

It is especially interesting to investigate experimentally the possible shift of
coexistence temperature in a system with heat flow. The right-hand side of (7.17)
may be positive or negative depending on systems. If Tc(p, J ) > Tc(p, 0), one
will find a remarkable phenomenon of “heat flux induced condensation,” i.e., one
observes condensation of a low temperature phase near one of the walls which
have slightly higher temperature than the normal transition temperature while the
other wall has much higher temperature!

8. DISCUSSIONS

8.1. Summary and Perspective

In the present work, we have step by step developed a full fledged thermody-
namics that is expected to apply to a wide class of nonequilibrium steady states.
We have tried hard to be as clear as possible in explaining our basic assumptions
and reasoning behind the construction. We believe that our consideration about
possible extensions of thermodynamics to nonequilibrium steady states is much
more careful and rigorous than any other existing attempts.

We have developed our theory in the level of purely macroscopic phenomenol-
ogy, and clarified what conclusions we get from only phenomenological considera-
tions. All thermodynamic quantities are defined through experimentally realizable
operations. We also made some nontrivial predictions that can be tested empiri-
cally. We shall discuss about possible experimental tests in Sec. 8.2.

The reader may have noticed that there are, roughly speaking, three stages
in our theory of SST. The first stage, developed in Secs. 3 and 4, deals with very
basic framework of SST. We have examined basic symmetries of nonequilibrium
steady states and fundamental structures of thermodynamics, and made a rather

49 To consider a solid phase goes beyond our framework to treat only fluids. But let us be optimistic.
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strong restriction on possible theories. The second stage, developed in Secs. 5 and
6, deals with thermodynamics with fixed T and ν. We have discussed important
physics (the minimum work principle and the density fluctuation formula) that
can be read off from the V , N dependence of the SST free energy. The third stage,
developed in Sec. 7, deals with SST in a complete form. We predicted the FIO and
the shift of coexistence temperature.

We believe that the logic in the first and the second stage is reasonably firm
and reliable. Although a sound logic does not necessarily mean the validity of the
theory, we are rather confident that our theory is realized in some nonequilibrium
systems in nature. The theory in the third stage is definitely most interesting, but its
logic is not as firm as the previous ones. First the notion of µ-wall is not yet perfectly
clear from an operational point of view, and must be further examined. Secondly,
our assumption about the concavity of the SST free energy depends solely on the
analogy with the conventional thermodynamics and has no operational foundation.
We nevertheless wish to encourage experimental works for testing our predictions
related to µ-wall contacts and clarifying the nature of contacts between equilibrium
states and nonequilibrium steady states. Either verification or falsification of our
predictions will provide hints for future development in nonequilibrium physics.

A crucial point about the potential significance of SST is whether it becomes
a useful guide in the (future) construction of statistical mechanics for steady
nonequilibrium states. The fact that we have arrived at an essentially unique theory
is rather encouraging. We hope that, by trying to construct a statistical theory that
is consistent with the (unique) nonequilibrium thermodynamics, we are naturally
led to a meaningful and correct statistical mechanics for steady nonequilibrium
states. We shall discuss related issues in the Appendix , where we look at SST
from a microscopic point of view.

8.2. Possibility of Experimental Tests

Let us briefly discuss possible experimental verification of our predictions.
Our aim here is not to go into details of concrete experimental setups but to make
clear some essential points in our theory which need to be tested empirically.

8.2.1. Chemical Potential and Fluctuation

Probably the most promising experiments of SST are those designed to ver-
ify the formula for density fluctuation in nonequilibrium steady states (and the
corresponding fluctuation-response relations) discussed in Sec. 6.2.

For this, one should prepare a system which is separated into two by a wall
(which realizes a weak contact of the two subsystems), and in which an external
potential can be varied. One then realizes a nonequilibrium steady state in the
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Fig. 19. The scheme of weak contact for a sheared fluid. The upper and the lower parts are separated
by a horizontal wall which has a small window in it. (a) Both the lower and the upper parts are in their
steady states. (b) The window opens for a finite interval of time, allowing some fluid to move. We
denote by j the total amount of fluid that have moved from the lower to the upper part. (c) The window
closes, and again both parts settle into their steady states with new densities. We repeat this process
many times and discuss the balance between the two parts, density fluctuation, and linear response.

system. See, for example, Figs. 16 and 19. One should also be able to measure the
amounts of substance in the two subsystems accurately.50

In the first stage of experiments, one fixes T , ν, and measures the averaged
amounts of substance for various (fixed) values of the potential difference u2 − u1.
Then by using these data and the definition (5.3) of the chemical potential, one can
experimentally determine µ(ρ) (up to an arbitrary additive constant). Of course
nothing has been verified at this stage.

In the second stage of experiments (which may of course be carried out at
the same time as the first stage), one measures the fluctuation of the amounts
of substance N1, N2 in the two subsystems, again for fixed u1 and u2. Then our
conjecture is that the probability to observe a partition into N1 and N2 behaves as

p̃(N1, N2) ∝ exp[−β{F(V1, N1) + u1 N1 + F(V2, N2) + u2 N2}], (8.1)

where we dropped T and ν. We have extended (6.9) to treat the case where the
two regions have volumes V1 and V2. This enables us to get as much information
as possible from this setting.

Now if the fluctuation is small (which seems to be always the case in actual
experiments for large systems), one may expand the above formula (8.1) to get

p̃(�N ) ∝ exp

[
−β

2

{
∂

∂ N1
µ

( N ∗
1

V1

)
+ ∂

∂ N2
µ

( N ∗
2

V2

)}
(�N )2

]
, (8.2)

where N ∗
1 and N ∗

2 are most likely values of the amounts of substance determined
by µ(N ∗

1 /V1) + u1 = µ(N ∗
2 /V2) + u2, and �N = N ∗

1 − N1 = N2 − N ∗
2 is the

deviation. Thus the variance of the deviation �N is given by

〈(�N )2〉 = 1

β

{
µ′(ρ∗

1 )

V1
+ µ′(ρ∗

2 )

V2

}−1

, (8.3)

50 A hopeful candidate is a system of charged plastic beads floating in water.
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where ρ∗
i = N ∗

i /Vi .
It must be noted that only µ′(ρ) (not µ(ρ) itself) appears in the formula (8.3)

of the variance. Since one has determined µ′(ρ) unambiguously in the first stage,
one can now check for the quantitative validity of (8.3). Note also that one can
increase the reliability of the conclusion by carrying out experiments with various
values of u2 − u1, and V1, V2.

As we shall discuss in Sec. 8.3.1, there is a possibility that the inverse
temperature β in (8.3) should be replaced with an “effective inverse temperature.”
Even if this is the case, a series of experiments with varying u2 − u1, V1, and V2

is enough to check for the quantitative validity of the conjectured formula (8.3).
Moreover, one can determine the effective inverse temperature from a com-

pletely independent set of measurements. One can measure relaxation process
which takes place after suddenly changing the potential difference, and compare
it with static temporal correlations through the fluctuation-response relations like
(6.10) or those described in Secs. A.4 and B.6. Since the parameter β appearing
in fluctuation-response relations should be the same as those in the density fluctu-
ation formula, this makes our proposal of experiments completely nontrivial. See
also Sec. A.5 for the similar discussion.

The minimum work principle (6.11) may be also checked empirically, but we
still do not know what can be conclusive experiments.

8.2.2. Flux Induced Osmosis

There is no doubt that the most exciting experimental verification of our SST
is to directly observe flux-induced osmosis (FIO), especially in a heat conducting
state, and directly measure the nonequilibrium order parameter �. Unfortunately
this project seems still not easy to carry out for several reasons. One essential
difficulty is that we still do not know how one can realize a perfect µ-wall, which
is necessary for a measurement of �. We imagine that a search for sufficiently
good µ-walls should be done through a series of careful experiments using
various different walls.

Therefore the first step will be to confirm the existence of FIO in a system
with not necessarily perfect µ-wall. This alone, we believe, can be an essential
step toward a better understanding of truly nonequilibrium systems. But even this
may not be easy since we have almost no a priori estimate for the magnitude of
the pressure difference. The lack of quantitative estimates is characteristic to any
thermodynamic arguments. Thermodynamics provides us with universal and exact
relations, but not with numerical estimates.

For dilute gases, however, we can make some rough estimates based on kinetic
theory. Consider a heat conducting state of a dilute gas. We want to examine the
dimensionless quantity θ = (pss − peq)/peq which characterizes the magnitude of
the FIO. Let j be the heat flux per unit area. Since θ should be an even function of
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j , it is expected that θ is proportional to j2 when j is small. Then the dimensional
analysis shows that the only dimensionless combination (that includes j2) of basic
quantities is

θ ∼ mj2

p2kT
, (8.4)

where m is the mass of the gas molecule. Of course p (which may be either peq or
pss) is the pressure and T is the temperature. This indeed is roughly equal to the
magnitude of the anisotropy of the pressure tensor obtained from the Chapman-
Enskog expansion.(33) The FIO obtained in the dilute gas calculation by Kim and
Hayakawa(35) also has the same order of magnitude.

To first confirm that FIO is negligibly small in the ordinary environment,
let us examine the Ar gas at T = 273 K and p = 1 atm. The heat flux is given
by j = κ(∇T ) with the thermal conductivity κ � 2.1 × 10−2 J (s m K)−1. As for
the temperature gradient, let us set for the moment ∇T = 104 K/m (i.e., 100 K
difference within 1 cm, which is easily realizable in the kitchen). By using m �
6.0 × 10−26 kg, we get θ ∼ 5 × 10−11, which is miserably small as we anticipated.

To get more general estimate and see what we can do, we further use the
results from the gas kinetic theory to write

j ∼
√

kT

m

k (∇T )

d2
, (8.5)

where d is the hard core diameter of the gas molecule. Then we get

θ ∼ k2 (∇T )2

d4 p2
, (8.6)

which is independent of T . The formula means that we must have low pressure
as well as large temperature gradient in order to observe a large nonequilibrium
effect. Let us set p = 10 Pa, for example, where the mean free path at room
temperature is still not too large. Let us require θ ∼ 10−2 since a difference
of 0.1 Pa may be detected by a diaphragm. Then since d ∼ 10−10 m, we need
to have ∇T ∼ 103 K/m, which may not be too unrealistic. Perhaps a major
challenge in the realization of this experiment is to control convection and other
non-thermodynamic effects. It was clearly pointed out in Ref. 89 that, in a naive
setting of FIO, the pressure difference due to the boundary effect (namely, the
temperature gap) is proportional to the heat flux j , and hence overwhelms the
effect predicted by SST. Therefore one should devise a special setting in which
the temperature gap is eliminated to reveal the effect proportional to j2 (See also
Sec. 8.3.3).

As for systems other than dilute gases, we have no estimates for FIO. We may
simply hope that the nonequilibrium effects become large in some complex fluids.

The conjectured shift of coexistence temperature is also an interesting topic
of experiments. In this case, however, we have no a priori estimate at all. It is quite
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interesting to know if experiments like the one described in Refs. 90 and 91 have
any relations with our predictions.

8.3. Frequently Asked Questions

During these four years that we have spent developing the present theory,
we were repeatedly asked some important questions in conferences, seminars,
personal discussions, and referee reports. We shall summarize below our answers
to some of these “frequently asked questions.”

Probably the most frequently asked question was about the possible relation
of SST to some of the existing attempts in nonequilibrium physics. This is why we
prepared Sec. 1.3, where we listed some of the major advances in nonequilibrium
physics and discussed their relevance (or irrelevance) to SST. We then concluded
that there have been essentially nothing really similar to SST, concerning either
basic philosophy or concrete theories.

8.3.1. What is “Temperature” in Nonequilibrium
Steady States?

In most stages of our phenomenological construction of SST, the role of
temperature has simply been to keep the environment constant.51 Therefore we
did not have to be so careful about precise parameterization of the temperature.
We simply used the same temperature scale as the heat baths, and declared that
the temperature may be measured by a thermometer.

In the future development of SST, however, it is quite likely that we must
examine the notion of temperature more carefully, and study the behavior of the
SST entropy in a quantitative manner. We will face the problem to determine the
temperature which is intrinsic to a nonequilibrium steady state. Let us discuss one
possibility here.

We determined the V , N dependence of the free energy F(T, ν; V, N ) in
Sec. 6.1, using the pressure and the chemical potential. Both the quantities were
determined operationally in Sec. 5 without references to the value of the tempera-
ture. The only requirement was that the temperature was fixed.

In Sec. 6.2, on the other hand, we discussed the formula (6.9) for density
fluctuation. In this formula, the free energy appears in the dimensionless form
F/(kBT ). We have so far assumed simply that this T is the same temperature as
the equilibrium temperature of the heat bath. (This is indeed the case in the driven
lattice gas, See Sec. B.4.) But there is a possibility that this T should be replaced

51 The only exception is the definition (7.5) of the SST entropy, which involves a differentiation in T .
But we did not have much quantitative discussions about the SST entropy.
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by an “effective temperature” intrinsic to the nonequilibrium steady state, which
may not necessarily be the same as the equilibrium temperature.

In other words, the fluctuation formula (6.9) may be used to experimentally
determine the intrinsic nonequilibrium temperature since the free energy itself
can be determined by other experiments which do not involve precise values
of temperatures. Moreover, as we have discussed in Sec. 8.2.1, measurements
related to linear response relations may be used to determine the nonequilibrium
temperature directly.

From a theoretical point of view, the parameter β that appears in the formula
(B.46) for the “weak canonicality” may be used to determine the nonequilibrium
temperature of a stochastic model (which coincides with the usual temperature in
the models studied in Appendix A.5).

8.3.2. Don’t Long-Range Correlations Destroy Thermodynamics?

It is well-known that nonequilibrium steady states in a system with a conser-
vation law generically exhibits spatial long range correlations.(20) More precisely
correlation functions of some physical quantities decay slowly with a power law,
even though the system is not at the critical point.

The mechanism of the long range correlation has been understood rather
clearly from a phenomenological point of view, and the existence of long range
correlations is confirmed in some experiments. There are also rigorous result(40)

and explicit perturbative calculations(44,81,92) which show that there indeed are such
long range correlations in concrete stochastic models. No doubt the existence of
long range spatial correlations is one of the intrinsic aspects of nonequilibrium
steady states.

One might rather naively imagine that the existence of long range correlations
is not consistent with the existence of thermodynamics since the correlations may
destroy extensivity or locality. But of course this is far from the case. The best
argument may be the fact (which will be rigorously established in Appendix )
that we can construct perfectly consistent SST for the driven lattice gas, which
is a typical model known to exhibit long range correlations. We do not only
obtain general formulae for the thermodynamic functions but also compute them
in the limit of high temperature and low density. We find nothing pathological that
originates from the long range correlations.

The point is that the long range correlations show up (literally) in multi-point
correlation functions, not in local observables. Thus they may lead to anomalous
fluctuation of the sum of a certain quantity in a large region of the system. A
notable example is anomalous density fluctuation mentioned in Sec. 6.2. If one
looks at local quantities such as the pressure, the temperature or the density, on
the other hand, one observes nothing anomalous originating from the long range
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correlations. Thus all the thermodynamic quantities of SST, which are defined in
terms of operations which involve local quantities, remain well-defined.

8.3.3. Why do you Consider Walls and Contacts?

The use of idealized walls and contacts may be the culture of thermodynam-
ics. In conventional thermodynamics, one freely uses such devices as infinitely thin
walls or perfectly adiabatic walls, or sometimes more delicate ones like semiper-
meable membrane.52 Decompositions, combinations, or contacts of various states
realized by these walls play fundamental roles in the construction of thermody-
namics. Of course boundaries are tricky objects even in equilibrium physics since
properties of the system are inevitably modified near the boundaries. Nevertheless
one can (very successfully) characterize bulk properties (not boundary properties)
of equilibrium states by using all these walls and contacts. In many cases regions
near boundaries are negligibly small compared with the bulk, and contacts are not
modified by boundary effects.

Simply speaking, we wish to adopt the same strategy in our approach to
nonequilibrium physics. We do consider various walls and contacts, but our main
concern is to reveal universal properties exhibited by bulk of nonequilibrium
steady states. Just as in equilibrium thermodynamics, walls and contacts are mere
probes with which we investigate bulk properties.

Of course there is a possibility that one encounters various unexpected bound-
ary effects caused by highly nonequilibrium nature of the states.53 That is why
we have carefully discussed the settings of the systems, the ways we insert and
remove walls, the ways we put two systems into contact, and so on. We have
tried to minimize unwanted disturbance of the states by the walls or contacts.
Nevertheless there may still arise delicate material-dependent issues (like the
temperature gap at boundaries) which complicate the analysis. In such cases, one
should carefully distinguish such non-universal effects specific to boundaries from
universal properties of the bulk, and try to minimize the former either theoreti-
cally or by experimentally devising a suitable setting. This may arouse nontriv-
ial challenges for experimental designs, but we believe it is always possible in
principle.

8.3.4. Is SST Useful?

If one assumes that SST is a correct theory describing nature, one can still
ask if the theory is useful.

52 But see Ref. 3 for a sever criticism about the use of semipermeable membrane.
53 A typical example is the delicateness about contact between nonequilibrium states and equilibrium

states as discussed in Sec. 7.
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To be honest, we admit that SST does not have much practical use at least in
its present form. As we have mentioned in Sec. 1.3.1, for example, we cannot get
any information about transport coefficients (linear or nonlinear) from the present
form of SST. The present SST only deals with the response of a system at a fixed
“degree of nonequilibrium.” As for the SST entropy, we do not expect it to play
a significant role like its equilibrium counterpart. This is because we do not have
(and do not expect to get) a natural operational definition of adiabatic operations
for nonequilibrium systems. (But see Ref. 2 for an attempt.)

We believe that the significance of SST should be sought in more concep-
tual and theoretical aspects. First of all, the mere fact that there exists a consis-
tent thermodynamics for a large class of nonequilibrium steady states (if true)
must be regarded as news of fundamental importance. It shows that nonequilib-
rium states are not generated arbitrarily by time evolution, but are subject to a
strict thermodynamic structure. More importantly from a practical point of view,
establishment of thermodynamics can be a first important step toward a construc-
tion of statistical mechanics for steady states. We believe that such a statistical
theory will not only of great theoretical interest but will have many practical
applications.

.APPENDIX A: WEAK CONTACT, DENSITY FLUCTUATION,

AND LINEAR RESPONSE IN A SHEARED FLUID

In the present appendix, we discuss a particular scheme for making two
subsystems of sheared fluid into contact, and examine some of the conjectures of
SST. Analysis presented here is limited to the first and the second stages of SST
(see Sec. 8.1), developed in Secs. 3 to 6, where we dealt with thermodynamics
with a “fixed degree of nonequilibrium.” Based on some plausible assumptions,
we can confirm our predictions about the density fluctuation stated in Sec. 6.2.
We can go further to discuss linear response theory and a determination of the
“nonequilibrium temperature.”

Compared with another “existence proof of SST” for the driven lattice gas
presented in the next Appendix , the present approach is more heuristic. Never-
theless, the present setting has a clear advantage of being much closer to realistic
systems. We hope that the results in the present Appendix and the next Appendix
play complementary roles in reinforcing the logic of SST developed in the main
body of the paper.

A.1. Weak Contact Scheme

Consider a system as in Fig. 19(a) in which a sheared fluid is separated into
two parts by a horizontal wall. Both the lower and the upper parts have volume V
and are characterized by the same “degree of nonequilibrium” (i.e., shear force)
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τ . Following the strategy of Sec. 5.2, potential which is equal to u1 and u2 in the
lower and the upper parts, respectively, is applied. We assume that the lower and
the upper parts are separately in nonequilibrium steady states with densities ρ1

and ρ2, respectively.
The horizontal wall has a window on it, which opens for a finite interval of

time. We assume that the size of the window is much smaller than that of the
wall, but is much larger than the molecular scale. Likewise the interval during
which the window is open is much shorter than the relaxation time of macroscopic
quantities, but is much longer than the molecular time scale. By j we denote the
amount of fluid that passes through the window from the lower part to the upper
part during the interval that the window is open.

After the window closes, we keep the system as it is for a sufficiently long
time so that the two parts reach their steady states with the new densities ρ ′

1 =
ρ1 − ( j/V ), and ρ ′

2 = ρ2 + ( j/V ), respectively.
We repeat many times the above procedure of (short) opening of the window

followed by a (long) relaxation period. Then there takes place a very slow exchange
of fluid between the lower and the upper parts of the system. This process of
exchange may be described as a discrete time Markov process where the state is
characterized by the densities (ρ1, ρ2) of the two parts. By analyzing this Markov
process, we can examine the construction and the predictions of SST.

The main motivation for devising this weak contact is that nonequilibrium
steady states generically develop spatial long-range correlations (see Sec. 8.3.2),
which lead to anomalous density fluctuation and transport. Since our basic strategy
in the present work (see Sec. 8.3.3) is to characterize the steady state in each
system by examining the contact, the long range correlation between the two parts
introduces unnecessary complication. By separating the two parts by a wall and
allowing the exchange of fluid only via the small window during a finite interval,
we can inhibit the system from developing long range correlations between the
upper and the lower parts. (Of course long range correlation within each part is
developed.)

Now we shall make some plausible assumptions about the behavior of the
quantity j , the amount of fluid that have moved in a single opening. The most
important assumption is that j is a random quantity whose behavior is determined
solely by local properties of the nonequilibrium steady states at the both sides of
the window. This is quite likely since the small window is open during the time
interval which is much shorter than the relaxation time. An important consequence
of this assumption is that the behavior of j essentially does not change when one
increases the total volume V of the system (fixing the size and the opening interval
of the window). This means that the change of the density in a single step, which is
j/V , is proportional to V −1. Thus j/V can be made much smaller than the change
of the average density in response to a change of potential, and than the typical
magnitude of the density fluctuation in a steady state (since the former change is
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independent of V , and the latter fluctuation is proportional to V −1/2). We shall
make use of this smallness of j/V repeatedly in what follows.

To simplify the notation, we write the potential difference as �u = u2 − u1,
and write the densities in the lower and the upper parts as ρ1 = ρ0 − θ and
ρ2 = ρ0 + θ , respectively. Here ρ0 is the total density, i.e., the total amount of
fluid divided by the total volume. From now on we shall always describe the
densities in the two parts using the deviation θ .

When �u and θ are given, we denote by ψ�u,θ ( j) the probability density for
the variable j . We assume that ψ�u,θ ( j) is independent of the volume V . We have
omitted the dependence on T and τ since these variables are always fixed.

When �u = 0 and θ = 0, the two parts of the system are completely identical.
Thus the corresponding probability density ψ0,0( j) is an even function of j with
a peak at j = 0. We assume that ψ0,0( j) decays rapidly for large | j |, and is
normalized as

∫
d j ψ0,0( j) = 1.

When θ �= 0, i.e., when the densities become uneven, the probability density
ψ becomes asymmetric. In the lowest order, this effect may be written as

ψ0,θ ( j) � N (0, θ ) ψ0,0( j) exp[−α0 θ j], (A.1)

where α0 is a certain constant, and N (0, θ ) is the normalization constant. When
there is a difference �u = u2 − u1 in the potential, this is further modified as

ψ�u,θ ( j) � N (�u, θ ) ψ0,0( j) exp

[
−α0 θ j − β

2
�u j

]
, (A.2)

again in the lowest order. Here β is a certain constant, which can of course be
identified as an inverse (effective) temperature. Again the constant N (�u, θ ) is
chosen to ensure

∫
d j ψ�u,θ ( j) = 1.

A.2. Balance Condition and the Chemical Potential

Suppose that we apply a small potential difference �u = u2 − u1 to the
system, and repeat the process of opening the window sufficiently many times to
have a steady balance between the lower and the upper parts. Since the balance is
attained when ψ�u,θ ( j) is symmetric in j , we get from (A.2) that

α0 θ = −β

2
�u. (A.3)

Since the definition (5.3) of the chemical potential implies

�u = u2 − u1 = µ(ρ0 − θ ) − µ(ρ0 + θ ) � −2θ µ′(ρ0), (A.4)

we can represent the derivative of the chemical potential as

µ′(ρ0) = α0

β
. (A.5)



194 Sasa and Tasaki

We note that when the two parts are in balance with each other, mechanical
balance as we discussed in Sec. 5.3 also holds. This is because the window is
sufficiently large and opens for a sufficiently long time for hydrodynamics to be
efficient. Consequently, the chemical potential expressed as (A.5) satisfies the
Maxwell relation (5.4) along with the pressure p(ρ) defined from mechanical
forces.

A.3. Density Fluctuation

We shall analyze the density fluctuation in the steady balance condition that
we have characterized, and derive the conjectured Einstein’s formula (6.9).

We fix the potential difference �u = u2 − u1, and describe the densities in
the lower and the upper parts as ρ1 = ρ0 − θ and ρ2 = ρ0 + θ , respectively. From
the balance condition (A.3), we see that the most probable value of the density
deviation θ is given by

θ0 = −β �u

2 α0
. (A.6)

To describe the fluctuation around θ0, we denote by p(θ ) the stationary prob-
ability density that densities in the two parts are ρ0 − θ and ρ0 + θ , respectively.
The stationary probability is the unique solution of

p(θ ) =
∫

dθ ′ p(θ ′) c(θ ′ → θ ), (A.7)

for any θ , where

c

(
θ → θ + j

V

)
= V ψ�u,θ ( j) (A.8)

is the transition probability density. It is normalized as∫
dθ ′ c(θ → θ ′) = 1. (A.9)

The condition (A.7) is the continuous state-variable version of (2.24).
As we shall see below, the solution of (A.7) can be obtained by assuming the

detailed balance condition (see Sec. 2.3.2)

p(θ ) c(θ → θ ′) = p(θ ′) c(θ ′ → θ ), (A.10)

for any θ and θ ′. Clearly (A.10) along with (A.9) implies (A.7), but not vice versa.
If we substitute θ ′ = θ + ( j/V ), (A.8), and (A.2), the detailed balance con-

dition (A.10) becomes

p(θ )N (�u, θ ) exp

[
−α0 θ j − β

2
�u j

]

= p

(
θ + j

V

)
N

(
�u, θ + j

V

)[
α0

(
θ + j

V

)
j + β

2
�u j

]
(A.11)
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We then have
p(θ )

p(θ + ( j/V ))
� exp[2αo θ j + β �u j], (A.12)

where we have used the smallness of j/V to neglect j2/V in the exponential and
set N (�u, θ + ( j/V ))/N (�u, θ ) � 1. By taking the logarithm and again noting
that j/V is small, we get

− j

V

∂

∂θ
log p(θ ) � 2αo θ j + β �u j, (A.13)

which can readily be solved to give

p(θ ) ∝ exp[−αo V (θ − θ0)2] = exp

[
−β µ′(ρ0)

(�N )2

V

]
(A.14)

where �N = (θ − θ0) V is the deviation measured by the amount of fluid. This is
nothing but the Einstein’s formula (6.9), expanded to the lowest order in �N .

A.4. Linear Transport

We finally treat time-dependent linear transport through the weak contact, and
prove the corresponding fluctuation-response relation. This is especially useful
since the resulting relations can be used to determine the parameter β in (A.2) by
using measurable quantities. See Sec. A.5.

It may appear surprising that one can deal with transport phenomena in a
highly nonequilibrium system. In this case, however, we are dealing with a very
weak flow in the direction orthogonal to the (strong) shear flow. This enables us
to treat the transport by using only elementary techniques in Markov processes.

Suppose, for simplicity, that the two parts have been in a steady contact with
vanishing potential difference �u = u2 − u1 = 0. At an instant, we apply a non-
vanishing but small potential difference54 �u. Then there takes place a relaxation
from a nonequilibrium steady state with �u = 0 to another nonequilibrium steady
state with nonvanishing �u.

Let us define the single-step time evolution operator by

[T̂�u p](θ ) =
∫

dθ ′ p(θ ′) c�u(θ ′ → θ ), (A.15)

where we have explicitly labeled c(θ → θ ′) (defined in (A.8)) with the potential
difference �u. The probability density after M openings of the window is given
by

pM (θ ) = [(T̂�u)M p0](θ ), (A.16)

54 It is also easy to treat time-dependent perturbation as we shall do in Sec. B.6.
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where p0(θ ) is the stationary distribution for the case �u = 0.
We wish to express T̂�u as a perturbation to T̂0. As for the transition proba-

bility, we find from (A.8) and (A.2) that

c�u(θ ′ → θ ) = N (�u, θ ′)
N (0, θ ′)

exp

[
−β

2
�u (θ − θ ′) V

]
c0(θ ′ → θ )

= c0(θ ′ → θ ) − β

2
�u (θ − θ ′) V c0(θ ′ → θ )

+β

2
�u

∫
dθ ′′ (θ ′′ − θ ′) V c0(θ ′ → θ ′′) + O((�u)2)

(A.17)

where the contribution from the normalization factor has been determined by not-
ing that

∫
dθ c0(θ ′ → θ ) = ∫

dθ c�u(θ ′ → θ ) = 1. To proceed we need to work
on the third term in the right-hand side of (A.17). By writing θ ′′ = θ ′ + ( j/V ), the
relevant integral becomes∫

dθ ′′ (θ ′′ − θ ′) V c0(θ ′ → θ ′′) = 1

V

∫
d j j c0

(
θ ′ → θ ′ + j

V

)

� −
(

α0 θ ′ + β

2
�u

)
( j0)2, (A.18)

where the final approximate expression is obtained from (A.8), (A.2), and a new
(but plausible) assumption that ψ0,0( j) ∝ exp(− j2/{2( j0)2}). Here j0 > 0 is the
typical value for the quantity j . We now note that θ and θ ′ differ only by O( j0/V ).
Therefore (A.18) implies that one can replace θ ′ by θ as∫

dθ ′′ (θ ′′ − θ ′) V c0(θ ′ → θ ′′) =
∫

dθ ′′ (θ ′′ − θ ) V c0(θ → θ ′′)

+ O

(
α0 ( j0)3

V

)
, (A.19)

where the difference is so small for large systems that we shall neglect it from now
on. By substituting the replacement (A.19) into (A.17), we have

c�u(θ ′ → θ ) = c0(θ ′ → θ ) − β

2
�u (θ − θ ′) V c0(θ ′ → θ )

+ β

2
�u

∫
dθ ′′ (θ ′′ − θ ) V c0(θ → θ ′′) + O((�u)2). (A.20)

By substituting (A.20) into (A.15), we get

[T̂�u p](θ ) � [T̂0 p](θ ) − β �u

2

∫
dθ ′ (θ − θ ′) V {p(θ ′) c0(θ ′ → θ )
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+ p(θ ) c0(θ → θ ′)}. (A.21)

When applied to p0(θ ), the stationary condition [T̂0 p0](θ ) = p0(θ ) and the de-
tailed balance condition (A.10) makes the expression (A.21) much simpler as

[T̂�u p0](θ ) � p0(θ ) − β �u

∫
dθ ′ (θ − θ ′) V p0(θ ′) c0(θ ′ → θ )

= p0(θ ) − β �u [ ĵ p0](θ ) (A.22)

We have defined the operator ĵ by

[ ĵ p](θ ) =
∫

dθ ′ (θ − θ ′) V p(θ ′) c0(θ ′ → θ ), (A.23)

which counts the total amount of the fluid that have moved and at the same time
generates a single-step time evolution.

By substituting (A.22) into (A.16), and expanding in �u, we find

pM (θ ) = p0(θ ) − β �u
M−1∑
m=0

[(T̂0)m ĵ p0](θ ) + O((�u)2). (A.24)

This is our basic equation for the linear response theory.
Let N1(θ ) = (ρ0 − θ ) V be the total amount of fluid in the lower part.

We denote its average after M openings of the window as 〈N̂1(M)〉�u =∫
dθ N1(θ ) pM (θ ). Here 〈N̂1(M)〉�u , as a function of M , describes the relaxation

phenomenon after the potential difference �u was turned on. By using (A.24), we
find that

〈N̂1(M)〉�u = N0 − β �u
M−1∑
m=0

N1(θ ) [(T̂0)m ĵ p0](θ ) + O((�u)2)

= N0 − β �u
M−1∑
m=0

〈N̂1(M) ĵ(M − m)〉0 + O((�u)2), (A.25)

where N0 = V ρ0 = ∫
dθ N1(θ ) p0(θ ) is the amount of fluid in the lower part in the

steady state with �u = u1 − u2 = 0. The definition of the temporal correlation
function 〈N̂1(M) ĵ(M − m)〉0 can be read off from (A.25).

Reflecting the fact that ĵ measures the amount of fluid moved from the lower
to the upper part, (A.25) can be further rewritten in the form

〈N̂1(M)〉�u = N0 + β �u 〈N̂1(M) {N̂1(M) − N̂1(0)}〉0 + O((�u)2). (A.26)

Thus the relaxation phenomenon is fully described (in the lowest order
in �u) in terms of the temporal correlation function in the steady state
without a potential difference. This means that one can unambiguously
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determine the inverse temperature β by measuring the behavior of the variable
N1.

A.5. Discussion

In the present appendix, we have devised a weak contact realized by a
small window in the setting of a sheared fluid. Based on plausible assump-
tions about the exchange of fluid through the window, we were able to re-
cover the conjecture of SST about the density fluctuation. We were further
able to show the fluctuation-response relation for the time-dependent relaxation
phenomena.

It is crucial that we have discussed three different settings and the corre-
sponding measurements, namely, to measure i) the most probable densities when
a potential difference is applied (Sec. A.2), ii) the density fluctuation for a fixed
potential difference (Sec. A.3), and iii) the relaxation phenomena (Sec. A.4) when
a potential difference is suddenly applied.

From i), we get information about µ′(ρ), and, from ii), we get β µ′(ρ).
These two already give nontrivial prediction to experimental results provided that
the parameter β can be identified as the inverse temperature. This is what we
expect most naively, but there is a possibility that β should be regarded as the
nonequilibrium inverse temperature which deviates slightly from its equilibrium
counterpart (see Sec. 8.3.1). In such a case, iii) provides a definite operational
method for measuring the “nonequilibrium inverse temperature” β. Thus the three
measurements proposed in i), ii), and iii) together form a complete operational
test about the validity of (a part of) SST.

It is quite interesting whether the present weak contact scheme can be applied
to systems other than the sheared fluid. Strictly speaking the present argument
works when there is a symmetry between the two parts. Thus it can be applied
directly only to systems with a symmetry such as the (T, φ; V, N ) formalism of
electrically conducting fluid. It would be very useful if similar scheme can be
developed in more general systems. Needless to say, a major remaining challenge
is to devise similar realization of the µ-wall contact that we have discussed in
Sec.7. For the moment this problem seems quite delicate, and we have concrete
results only in the driven lattice gas (see Sec. B.7).

.APPENDIX B: SST IN THE DRIVEN LATTICE GAS

In the main body of the paper, we have developed the framework of steady
state thermodynamics (SST) from a macroscopic phenomenological point of
view. In the present Appendix, we will develop a microscopic point of view, and
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demonstrate that SST can be realized in nonequilibrium steady states of a stan-
dard Markov process called the driven lattice gas. This provides a complementary
analysis to the “mesoscopic” approach developed in the Appendix B.3.4. The ar-
gument here is quite general and can be extended to a much larger class of Markov
processes.

With this “existence proof” we can be sure that our framework of SST is
theoretically consistent. Moreover concrete mathematical results in the driven
lattice gas may give us hints for further development of our phenomenology.

Here we introduce the driven lattice gas, and realize a weak contact to de-
termine the chemical potential, the pressure, and the free energy. We get general
formulae for these thermodynamic quantities, which allow us to compute them
explicitly (by using, for example, a computer or a systematic expansion). We also
present results of the simplest calculation in the limit of high temperature and low
density.

We stress that we are not defining these thermodynamic quantities based
on formal analogies with the equilibrium statistical mechanics, but rather defin-
ing everything based on the operational procedures discussed carefully in Sec.5.
Therefore our free energy F is (at least for the moment) not related to a statistical
quantity through a relation like F = −(1/β) log Z or S = kB log W .

We also show that the fluctuation relation (see Sec. 6.2) and the minimum
work principle (see Sec. 6.3) hold exactly in these models. We argue that an ideal
µ-wall (see Sec.7.2) may be constructed for the driven lattice gas. We can go
further to develop a linear response theory for time-dependent particle exchange
process through weak coupling (see Sec.A.4).

As is clear from the summary in the above paragraphs, we can reproduce
most aspects of our phenomenological construction.

Remark: If one applies the construction in the present Appendix to a Markov
process whose stationary distribution corresponds to an equilibrium state, then
we get thermodynamic quantities which exactly coincide with those obtained
from equilibrium statistical mechanics. This fact alone is of some interest since
our derivation involves only local correlation functions, nothing analogous to
the partition function. One may regard our construction as a robust method of
“getting thermodynamics without a partition function,” which can be applied to
nonequilibrium steady states as well as equilibrium states.

B.1. Definition

Let us define the driven lattice gas. It belongs to a class of models which are
obtained by making minimum modifications to Markov processes for equilibrium
dynamics discussed in Sec. 2.3. As we have stressed in Sec. 2.3.2, the detailed
balance condition (2.25) with respect to the equilibrium state is a fundamental
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requirement for constructing physically meaningful models for equilibrium dy-
namics. Unfortunately we still do not know what are corresponding guiding prin-
ciples in nonequilibrium stochastic dynamics. This means that we must proceed
carefully, not over-trusting results from model studies, and always questioning
robustness of conclusions.

For simplicity we treat models in two dimensions, but extensions to higher
dimensions are automatic. Define an � × h lattice � by

� =
{

x = (x1, x2)
∣∣∣ x1 = 0,±1, . . . ,±� − 1

2
, x2 = 0,±1, . . . ,±h − 1

2

}
,

(B.1)

where (as usual) x1 and x2 are the horizontal and the vertical coordinates,
respectively. Lattice sites are denoted as x, y, . . . ∈ �. We impose periodic
boundary conditions (i.e., we identify x1 = (� + 1)/2 with x1 = −(� − 1)/2, and
x2 = (h + 1)/2 with x2 = −(h − 1)/2). For each site x ∈ �, we associate an oc-
cupation variable ηx . We set ηx = 1 if the site x is occupied by a particle, and
ηx = 0 if x is empty. We do not allow more than two particles to occupy a single
site. See Fig. 20.

We denote a collection of ηx for all x ∈ � as

η = (ηx)x∈�, (B.2)

and call it a configuration. A configuration η corresponds to a microscopic state s
in Secs. 2.2 and 2.3. For a given configuration η, we write

|η| =
∑
x∈�

ηx, (B.3)

which is the total number of particles in η.
The Hamiltonian H�(·) gives the energy H�(η) for a configuration η on the

lattice �. Although our discussion does not depend on the specific choice of H�(·)

Fig. 20. Basic setup of lattice gas models. Particles live on sites of the � × h two dimensional lattice.
Particles hop around the lattice according to given transition rates.
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(except in Sec. B.8), let us take for concreteness the Ising Hamiltonian

H�(η) = −J
∑
〈x, y〉

ηxη y, (B.4)

where J is the coupling constant, and the sum is over all pairs of nearest neighbor
sites (according to the periodic boundary conditions). Although the symbol J is
used to denote the flux in the main body of the paper, we here follow the standard
notation in the driven lattice gas.

For a site x ∈ � and a configuration η, we denote by ηx the new configuration
obtained by changing55 the value of ηx in η. More precisely, we set

(ηx) y =
{

1 − ηx if y = x;
η y if y �= x. (B.5)

Similarly for x, y ∈ � and a configuration η, we denote by ηx, y the configuration
obtained by changing both ηx and η y.

We can define a Markov process using the general discussion in Sec. 2.3.1
once we specify the transition rates c(T,E)

� (η → η′). For any configuration η and
any x, y ∈ � such that |x − y| = 1, we set

c(T,E)
� (η → ηx, y) = ηx(1 − η y) φ[β{H�(ηx, y) − H�(η) + E(x1 − y1)}]

+ (1 − ηx)η y φ[β{H�(ηx, y) − H�(η) + E(y1 − x1)}],
(B.6)

where β = 1/(kBT ) is the inverse temperature and E is the “electric field” in the
x1 direction. Here φ(h) is the function introduced in Sec. 2.3.1, and again satisfies
(2.28). The first term in the transition rate (B.6) represents a hop of particle from
x to y and the second term from y to x. We set c(T,E)

� (η → η′) = 0 for η, η′ not
of the form (B.6). Note that the particle number |η| is conserved in the allowed
transitions.

A Markov process with the transition rates (B.6) is ergodic (see Sec. 2.3.1)
in a state space with a fixed |η|. Thus for each positive integer N ≤ �h, there
is a unique stationary distribution p(T,E)

�,N (η) which is nonvanishing only when
|η| = N . When E �= 0, this stationary distribution represents the nonequilibrium
steady state of the system. We denote the average over the steady state distribution
as

〈g(η)〉(T,E)
�,N =

∑
η

g(η) p(T,E)
�,N (η), (B.7)

where g(η) is an arbitrary function of configurations.

55 Since ηx = 0, 1, the change means 0 → 1 or 1 → 0.
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In the steady state of the present driven lattice gas, there is a constant flow of
particles toward the right. In this sense the model has some resemblance with the
(T, φ; V, N ) formalism of electrical conduction. See Sec.4.4, especially Fig. 13(b).
Note that we do not have electric plates here, which are effectively replaced by the
periodic boundary conditions. Since the parameter E corresponds to electric field,
we can identify the nonequilibrium intensive variable as φ = E�. For convenience,
however, we shall use the parameter E (which may also be regarded as an intensive
nonequilibrium variable) to characterize the steady states.

B.2. Local Detailed Balance Condition

Take any x, y ∈ � such that |x − y| = 1, and let η be any configuration such
that ηx = 1 and η y = 0. Then the definition (B.6) and the condition (2.28) for φ(h)
implies

c(T,E)
� (η → ηx, y)

c(T,E)
� (ηx, y → η)

= exp[β{H�(η) − H�(ηx, y) + E(y1 − x1)}], (B.8)

which should be compared with the detailed balance condition (2.26) in equi-
librium dynamics. It must be noted that there is no single function56 H̃ (·)
which enables us to express the right-hand side of (B.8) simply as exp[{H̃ (η) −
H̃ (ηx, y)}]. Try, for example, H̃ (η) = H�(η) − E

∑
x∈� x1ηx . Then (B.8) is equal

to exp[β{H̃ (η) − H̃ (ηx, y)}] for most x except for those at boundaries. For any
x ∈ � one can choose a H̃ (·) which covers sites around x, but not the whole
lattice. In this sense, the relation (B.8) is sometimes called57 the “local detailed
balance.”

B.3. Determination of Thermodynamic Quantities

We will see how we can realize the weak contact of two systems, and evaluate
thermodynamic quantities.

B.3.1. Weak contact in Lattice Gases

We shall now realize in the context of lattice gases the idea of weak contact.

56 If there was one, we could write the steady state distribution as pss(η) = Z̃−1 exp[−β H̃ (η)], and
the Markov process would satisfy the detailed balance condition with respect to pss(η).

57 The term “local detailed balance” might be a bit confusing. A detailed balance condition, as in
(2.25), is always stated with respect to a particular stationary distribution. Here one still does not
know what the stationary distribution is. A condition like (B.8) may be better called “local energy
conservation.”
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2u

u1

Λ2

Λ1

Fig. 21. Weak contact of two steady states in a lattice gas model. Potential which is equal to u1 and
u2 on the lattices �1 and �2, respectively, is applied to the system. The potential only modifies the
transition rates between the two lattices. By using this setting we can define the chemical potential of
a lattice gas model. In fact the same setting can be used to realize a perfect µ-wall that connects a
nonequilibrium steady state with an equilibrium state. See Sec. B.7.

Let �1 and �2 be � × h lattices identical to � of (B.1). (It is automatic to
extend the present discussion to cases where �1 and �2 are not identical.) We
denote by η and ζ lattice gas configurations on �1 and �2, respectively. The total
Hamiltonian is

H (u1,u2)
tot (η, ζ ) = H�1 (η) + H�2 (ζ ) + u1|η| + u2|ζ |, (B.9)

where H�i (·) (i = 1, 2) are copies of the Hamiltonian H�(·), and u1 and u2 are
uniform potentials applied to �1 and �2, respectively. Note that such a potential
does not affect the dynamics within �1 or �2 at all, and only modifies hopping
between the two lattices (See Fig. 21).

Our Markov process is defined by the transition rates c(T,E)
�1

(η → ηx, y) and

c(T,E)
�2

(ζ → ζ x, y) (which are faithful copies of c(T,E)
� (η → ηx, y) of (B.6)) within

each sublattice, and additional transition rates for hops between the two sublattices
�1 and �2.

1 2

E1
E2

W E1 W

Fig. 22. A system consisting of two states 1 and 2 which are separated by a large energy barrier W .
By examining equilibrium dynamics that satisfies the detailed balance condition, we can determine the
transition rates c(1 → 2) and c(2 → 1).
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Let us pose here and examine how one should design transition rates for two
subsystems that are coupled very weakly. Here we assume that the weak coupling
is realized by the presence of a very large energy barrier for transitions between
the two subsystems. For simplicity let us first consider a system with two states 1
and 2 with the energies E1 and E2, and assume that the two states are separated by
an energy barrier W � E1, E2. See Fig. 22. We shall construct a Markov process
describing the equilibrium of this system. Suppose that the system is in the state
1. In order for the system to jump into the state 2, it must first reach the top of the
energy barrier, raising the energy by W − E1. Since there is no cost required for
falling down into the state 2, we may assume that the transition rate from the state
1 to 2 is fully determined by the relative height W − E1 of the wall. This means
that we can write c(1 → 2) = ψ(W − E1) with some function ψ(h). Similarly we
have c(2 → 1) = ψ(W − E2) for the opposite transition. By requiring the detailed
balance condition (2.26)

c(1 → 2)

c(2 → 1)
= ψ(W − E1)

ψ(W − E2)
= eβ(E1−E2), (B.10)

we find that the only possible choice is ψ(h) = c e−βh with some constant c. Thus
we find that

c(1 → 2) = ε eβE1 , c(2 → 1) = ε eβE2 , (B.11)

with ε = c e−βW . Note that the assumption of very high energy barrier led us to
the essentially unique choice of the transition rates.58

Now we come back to the task of realizing a weak contact between two
sublattices of driven lattice gas defined on �1 and �2. We assume that, for each
j = 0,±1, . . . ,±(� − 1)/2, a particle can hop between the site59 ( j, 0) in �1 and
the corresponding site ( j, 0) in �2. We also assume that the particle must go over
a very high energy barrier to execute such a hop. Then we see that the transition
rates should be of the form (B.11), where E1, E2 should be interpreted as local
energies. Then we get60

c[(η, ζ ) → (ηx, ζ x)] = ε ηx(1 − ζx) exp[β{H�1 (η) − H�1 (ηx) + u1}]
+ ε (1 − ηx)ζx exp[β{H�2 (ζ ) − H�2 (ζ x) + u2}],

(B.12)

58 Also note that the rates used here do not fit into the general form assumed in Sec. 2.3.1.
59 Note that both the sites are in the bulk of each subsystem since we impose periodic boundary

conditions. We have chosen this definition since our main purpose is to characterize bulk properties of
nonequilibrium steady states rather than to investigate properties of realistic contact. See Sec. 8.3.3.
In equilibrium, the second law guarantees that it does not make any difference (in macroscopic
scale) whether one puts boundary sites or bulk sites into contact. We still do not know whether
nonequilibrium steady states possess similar robustness.

60 Going back to the definition (B.5) of ηx , one sees immediately that the values (which can be 0 or 1)
of ηx and ζx are simply exchanged in the process (η, ζ ) → (ηx , ζ x ), no matter what η and ζ are.
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for x = ( j, 0) with j = 0,±1, . . . ,±(� − 1)/2. We set c[(η, ζ ) → (η′, ζ ′)] = 0
for configurations not of the form (B.12). The first term in (B.12) represents a hop
from �1 to �2 and the second term from �2 to �1. Note that we do not have terms
involving the electric field E in (B.12) since we imagine that particles hop in the
direction orthogonal to the field. Indeed for any nonvanishing c[(η, ζ ) → (ηx, ζ x)]
we have the detailed balance condition (see (2.26))

c[(η, ζ ) → (ηx, ζ x)]

c[(ηx, ζ x) → (η, ζ )]
= exp

[
β
{

H (u1,u2)
tot (η, ζ ) − H (u1,u2)

tot (ηx, ζ x)
}]

. (B.13)

We investigate the steady state of this model with the total particle number |η| +
|ζ | = 2N where N is a constant. When ε = 0, the two sublattices decouple,
and hence the distribution p(T,E)

�1,N1
(η) p(T,E)

�2,N2
(ζ ) with any fixed N1, N2 such that

N1 + N2 = 2N is stationary. We want to see how this situation is modified in the
lowest order of ε > 0.

In the limit ε → 0, where particle exchanges between �1 and �2 are in-
finitesimally rare, the states within �1 and �2 first reach their steady states. When
a particle hops between �1 and �2, again the states in the two sublattices relax to
the steady states with the new particle numbers. Such a separation of time scale
enables us to study stochastic dynamics of particle exchange between �1 and �2

separately from the relaxation process in each sublattice.
We fix the total particle number 2N , and denote by N1 the number of particles

in �1. Since the number of particles in �2 is automatically known to be N2 = 2N −
N1, we only specify N1 in what follows. Since a hop between the two sublattices
takes place in the distribution p(T,ν)

�1,N1
(η) p(T,ν)

�2,N2
(ζ ), the effective transition rate

for a hop from �1 to �2 is obtained by averaging the sum of the rates (B.12)
as

c̃(N1 → N1 − 1)

=
〈

(�−1)/2∑
j=−(�−1)/2

η( j,0)
(
1 − ζ( j,0)

)
c
[
(η, ζ ) → (

η( j,0), ζ ( j,0)
)]〉(T,E)

�1,N1;�2,N2

= ε

(�−1)/2∑
j=−(�−1)/2

〈
η( j,0)

(
1 − ζ( j,0)

)
exp

[
β
{

H�1 (η)

− H�1

(
η( j,0)

) + u1
}]〉(T,E)

�1,N1;�2,N2
, (B.14)

where the average is taken over p(T,E)
�1,N1

(η) p(T,E)
�2,N2

(ζ ). By noting that the average
separates into those for each sublattice, and using the translation invariance, we
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find

c̃(N1 → N1 − 1) = ε �

(
1 − N2

V

)
g(N1) eβ u1 , (B.15)

where V = �h and

g(N ) = 〈
ηx exp [β{H�(η) − H�(ηx)}]〉(T,E)

�,N

=
〈

ηx exp
[

− β J
∑

y;| y−x|=1

η y

] 〉(T,E)

�,N

, (B.16)

where we substituted the Hamiltonian (B.4). Here x is one of ( j, 0), but it can
actually be an arbitrary site in � because of the translation invariance.

Similarly we have

c̃(N1 → N1 + 1) = ε �

(
1 − N1

V

)
g(N2) eβ u2 , (B.17)

for a hop from �2 to �1.

B.3.2. Chemical Potential of Lattice Gases

To find the chemical potential let Ñ1 and Ñ2 be the average particle numbers
in the steady state of the whole system. Since hops between the two sublattices
balance with each other, we can assume that

c̃(Ñ1 → Ñ1 − 1) = c̃(Ñ1 − 1 → Ñ1). (B.18)

Then by using (B.15) and (B.17), we get

1

β
log

g(Ñ1)

1 − (Ñ1 − 1)/V
+ u1 = 1

β
log

g(Ñ2 + 1)

1 − Ñ2/V
+ u2. (B.19)

By comparing this equality with our definition (5.3) of the chemical potential, we
are led to define

µ(ρ) = 1

β
log

g(ρ�h)

1 − ρ + V −1
� 1

β
log

g(ρ�h)

1 − ρ
, (B.20)

where ρ = N/(�h) is the density. We assume that µ(ρ) defined by (B.20) has a
sensible infinite volume limit �, h → ∞ (i.e., V → ∞). Then (B.19) precisely
coincides with the desired balance Eq. (5.3).

Recalling the definitions (B.16) of g(N ), we stress that we have ob-
tained a concrete formula (B.20) for the chemical potential which involve
expectation values in the steady state. Therefore one can in principle compute
µ(ρ) = µ(T, E ; V, N ) by using systematic approximations or a computer. See
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Sec. B.8. Note that our formula (B.20) for the chemical potential involves correla-
tion functions of only local quantities. Therefore it is not affected by the long range
power law correlations which are found universally in nonequilibrium steady
states of lattice gases. This can be clearly seen in our perturbative calculation in
Sec. B.8. See Sec. 8.3.2 for more discussions about long range correlations.

Note also that in (B.20) we have written down µ(ρ) without any ambiguities.
To be precise, the relation (5.3) only determines the ρ dependence of the chemical
potential. So there is a freedom to add any function µ0(T, E) to (B.20). But the
simplicity of the formula (B.20) suggests that this is the “right” choice. Indeed
a consideration about µ-walls in Sec. B.7 indicates that (B.20) is the complete
formula for the chemical potential.

B.3.3. Pressure of Lattice Gases

We shall define pressure for the driven lattice gas. Since lattice gas models do
not have the notion of momentum, the standard definition in terms of mechanical
forces do not apply. Instead we here obtain pressure from the mechanical work
required to change the volume (area).

We consider two lattices with the same width � and different heights h and
h̃. We assume h � h̃. We place the smaller lattice on top of the larger one, and
put them into a weak contact with each other as in Fig. 23. We apply a uniform
potential u only to the smaller subsystem, and keep T and E constant over the
whole system.

We first set u = 0 and let the whole system reach its steady state. Since the
conditions are the same everywhere, we get a uniform local steady state with
density ρ over the whole system. Then we slowly vary u from 0 to ∞. When
u = ∞, there are no particles in the smaller subsystem, and we have a uniform
local steady state with T , E and the density ρ{1 + (h̃/h)} � ρ in the larger
subsystem.

u

Fig. 23. The setting used to determine the pressure in the lattice gas. By changing the potential u
applied to the smaller subsystem from 0 to ∞, we can effectively reduce the volume (area) of the
system by �h̃. From the mechanical work required to perform this change, we define the pressure.
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Let ρ̃(u) be the density in the smaller subsystem when the potential is u. By
the balance condition (5.3), this density can be determined by

µ(ρ) = µ(ρ̃(u)) + u, (B.21)

where we set the density in the larger subsystem to ρ. This is allowed since
the deviation is of order ρh̃/h, and we can make h̃/h as small as we want. By
differentiating (B.21) by u, we get

dρ̃(u)

du
= − 1

µ′(ρ̃(u))
. (B.22)

Now we evaluate the mechanical work required to change the potential u.
Since the total number of particles in the smaller subsystem is ρ̃(u) � h̃, the work
needed to change the potential from u to u + �u is equal to �W = �u ρ̃(u) � h̃ +
O((�u)2). The total work is obtained by summing this up as

W = � h̃

∫ ∞

0
du ρ̃(u) = � h̃

∫ ρ

0
dρ̃ ρ̃ µ′(ρ̃), (B.23)

where we used (B.22) to change the variable.
Defining the pressure p by the standard relation W = p �V with �V = � h̃

being the volume (area) of the smaller subsystem, (B.23) implies

p(ρ) =
∫ ρ

0
dρ̃ ρ̃ µ′(ρ̃), (B.24)

which is the final formula of pressure in the lattice gas. Note that the Maxwell
relation (5.4) is obvious from the formula (B.24).

B.3.4. Free Energy of Lattice Gases

Now that we have the formulae for the chemical potential (B.20) and the
pressure (B.24), we use the Euler equation (6.2) in the form

f (ρ) = −p(ρ) + ρ µ(ρ) =
∫ ρ

0
dρ̃ µ(ρ̃), (B.25)

to define the specific free energy f (ρ) = F(T, E ; 1, ρ) = F(T, E ; V, N )/V with
ρ = N/V . The second equality in (B.25) is obtained by using the formula (B.24)
and integrating by parts.

We have thus obtained concrete formulae for the chemical potential, the
pressure, and the free energy of a nonequilibrium steady state of the lattice gas. The
formulae only involve local correlation functions in the steady state distribution,
and may be computed in a concrete model.
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B.4. Steady State and Density Fluctuation

We will now study the steady state distribution of a weakly coupled system
and show that Einstein’s formula (6.9) for the density fluctuation holds exactly in
the present setting. Recall that in equilibrium statistical mechanics, the relation
(6.9) follows trivially from the canonical distribution (Sec. 2.2). We note that an
analogous derivation is never possible here since we still do not know anything
about general forms of steady state distribution in nonequilibrium systems. Nev-
ertheless the same relation can be proved by examining the effective stochastic
process of particle exchange between the two subsystems.

Consider again the situation in Sec. B.3.1, where two identical systems on
�1 and �2 are weakly coupled with each other. There are uniform potentials u1

and u2 on �1 and �2, respectively.
We are interested in the steady state with the total particle number |η| + |ζ | =

2N . When ε = 0, the distribution p(T,E)
�1,N1

(η) p(T,E)
�2,N2

(ζ ) with any fixed N1, N2 such
that N1 + N2 = 2N is stationary.61 If we take into account the effect of ε > 0 in
the lowest order, the above degeneracy is lifted and we get a unique steady state
distribution of the form

p(T,E ;u1,u2)
�1,�2;2N (η, ζ ) = p̃(T,E ;u1,u2)

�1,�2;2N (|η|, |ζ |) p(T,E)
�1,|η|(η) p(T,E)

�2,|ζ |(ζ ), (B.26)

where p̃(T,E ;u1,u2)
�1,�2;2N (N1, N2) is nonvanishing only when N1 + N2 = 2N . We again

specify only N1, and abbreviate p̃(T,E ;u1,u2)
�1,�2;2N (N1, N2) simply as p̃(N1). It is the

probability of finding N1 particles in �1 and 2N − N1 particles in �2, and is
normalized as ∑

N1

p̃(N1) = 1. (B.27)

We will now evaluate p̃(N1).
We substitute the steady state distribution (B.26) into the general condition

(2.24) of stationarity, and then take partial sums over η and ζ with fixed |η| and |ζ |.
By recalling the definition (B.14) of the effective transition rate for hop between
the two sublattices, this gives∑

σ=±1

{−c̃(N1 → N1 + σ ) p̃(N1) + c̃(N1 + σ → N1) p̃(N1 + σ )} = 0, (B.28)

for any N1.
To solve (B.28), we try the ansatz

p̃(N1) = q (u1)(N1) q (u2)(2N − N1), (B.29)

61 Recall that p(T,E)
�,N (η) is the steady state distribution for the system on �, and is nonvanishing only

when |η| = N .
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with a function q (u)(N ). We also assume that each term in the sum in the left-hand
side of (B.28) vanishes. This is a kind of detailed balance condition. By using
(B.15) and (B.17), we find that this condition is satisfied if

eβu g(N ) q (u)(N ) =
(

1 − N − 1

V

)
q (u)(N − 1), (B.30)

which means

q (u)(N ) = q (u)(0) e−βuN
N∏

M=1

1 − (M − 1)/V

g(M)

= const. exp

[
−βuN − β

N∑
M=1

µ

(
M

V

)]
, (B.31)

where we used (B.20). Note that

N∑
M=1

µ

(
M

V

)
� V

∫ ρ

0
dρ̃ µ(ρ̃) = V f (ρ), (B.32)

where we used (B.25) and wrote ρ = N/V . Thus from (B.31) and (B.29), we get
the desired estimate

p̃(T,E ;u1,u2)
�1,�2;2N (N1, N2) = const. exp[−βV {u1ρ1 + u2ρ2 + f (ρ1) + f (ρ2)}],

(B.33)

where ρ1 = N1/V1 and ρ2 = N2/V2.
If one sets u1 = u2 = 0, (B.33) becomes

p̃(T,E)
�1,�2;2N (N1, N2) = const. exp[−β{F(T, E ; V, N1) + F(T, E ; V, N2)}],

(B.34)

which is precisely Einstein’s formula (6.9) for density fluctuation. It should be
stressed that this is an exact relation, which covers both small fluctuations and
large deviations. At least in the setting of weakly coupled lattice gases, we have
shown rigorously that the density fluctuation in nonequilibrium steady states is
exactly governed by the SST free energy.

It is easy to extend the fluctuation formula to the case where more than two
subsystems are weakly coupled with each other.

B.5. Minimum Work Principle

Let us continue and study the steady state distribution in more detail. This
will lead us to the minimum work principle for steady states.
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By substituting (B.33) to the full expression (B.26) of the steady state distri-
bution, we get the final formula for the steady state distribution

p(T,E ;u1,u2)
�1,�2;2N (η, ζ ) = c0 eβ �(u1,u2)−β{u1|η|+u2|ζ |+F(|η|)+F(|ζ |)} p(T,E)

�1,|η|(η) p(T,E)
�2,|ζ |(ζ ),

(B.35)

for η and ζ such that |η| + |ζ | = 2N , where F(N ) is a shorthand
for F(T, E ; V, N ). We wrote the (unknown) normalization factor as62

c0 exp[β �(u1, u2)], where c0 does not depend on u1 and u2. We now investigate
the function �(u1, u2), and show that it is nothing but a Legendre transformation
of the free energy F(N ).

We fix all the parameters except u1, u2, and denote the average over the
distribution (B.35) as 〈· · ·〉u1,u2

. Let us write

N1(u1, u2) = 〈|η|〉u1,u2
, N2(u1, u2) = 〈|ζ |〉u1,u2

. (B.36)

From the normalization condition∑
η,ζ

(|η|+|ζ |=2N )

p(T,E ;u1,u2)
�1,�2;2N (η, ζ ) = 1, (B.37)

and the expression (B.35), we find

�(u1, u2) = − 1

β
log

〈
e−β(u1|η|+u2|ζ |)〉

0,0
. (B.38)

By differentiating (B.38), we get

∂�(u1, u2)

∂u1
= N1(u1, u2),

∂�(u1, u2)

∂u2
= N2(u1, u2), (B.39)

which can be regarded as differential equations for determining �(u1, u2).
We now claim that the solution of (B.39) is given by

�(u1, u2) =
2∑

i=1

{F(Ni (u1, u2)) + ui Ni (u1, u2)}. (B.40)

To see this, we simply differentiate (B.40) by u1 to get

∂�(u1, u2)

∂u1
= N1(u1, u2) +

2∑
i=1

[
∂ Ni (u1, u2)

∂u1

{
µ

(
Ni (u1, u2)

V

)
+ ui

}]
,

(B.41)

62 We may set c0 = 1. But with the freedom of adjusting c0, we do not have to worry about additive
constant in �(u1, u2).
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where we used (6.4). Note that the balance condition (5.3) implies that
µ(Ni (u1, u2)/V ) + ui is independent of i = 1, 2. Then since N1(u1, u2) +
N2(u1, u2) = 2N is constant, the second term in the right-hand side of (B.41)
vanishes. We thus get the first equation in (B.39). The second equation follows
similarly.

We have thus determined the steady state distribution (B.35) including the
normalization function. The formula (B.40) shows that �(u1, u2) is obtained from
F(T, E ; V, N ) by a Legendre transformation.

At this stage we shall see what we get from the general second law of Markov
processes described in Appendix C.

We consider a time-dependent Markov process where the potentials u1(t),
u2(t) become time-dependent in the present model. The pair (u1, u2) correspond
to the parameter α in Appendix C. The system is initially in the steady state
corresponding to (u1(0), u2(0)), and we vary u1(t), u2(t) in an arbitrary manner
for 0 ≤ t ≤ tf .

Using (B.35), we see that the function ϕ(α) of (C.2), which play a fundamental
role in the second law, becomes

ϕ(u1,u2)(η, ζ ) = β{u1|η| + u2|ζ | − �(u1, u2)} − log p(T,E ;0,0)
�1,�2;2N (η, ζ ). (B.42)

Therefore the second law reads
∫ tf

0
dt

{
du1(t)

dt
〈|η|〉t + du2(t)

dt
〈|ζ |〉t

}
≥ �(u1(tf ), u2(tf )) − �(u1(0), u2(0)).

(B.43)
Since 〈|η|〉t and 〈|ζ |〉t are the number of particles in �1 and �2, respectively, the
left-hand side of (B.43) is precisely the mechanical work W needed to change the
potentials u1(t), u2(t). Thus (B.43) becomes

W ≥ �(u1(tf ), u2(tf )) − �(u1(0), u2(0)), (B.44)

which is the minimum work principle for steady states. Note that � rather than
F appears on the right-hand side because we are controlling the potentials u1, u2,
rather than the volume. If we set u1(0) = u2(0) = 0 and u1(tf ) = 0, u2(tf ) = ∞,
then (B.44) becomes

W ≥ F(T, E ; V, 2N ) − 2 F(T, E ; V, N )

= F(T, E ; V, 2N ) − F(T, E ; 2V, 2N ), (B.45)

which is precisely of the form (6.11) of the conjectured minimum work principle.
It is an easy exercise to extend the minimum work principle (B.44) to the

cases where n subsystems are weakly coupled with each other. Then one is allowed
to change the potentials u1(t), . . . , un(t) in an arbitrary manner.
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The present minimum work principle, although valid for any u1(t), u2(t),
may not be too exciting since weak coupling ensures that each subsystem is in a
steady state for any t . But see the following remark.

Remark: The essences of the minimum work principle (B.44) may be the following
property that we shall call “weak canonicality.” Consider a Markov process for
a lattice gas, and let p0(η) be the stationary distribution for the case where no
potential is applied to the system. We then apply a potential u(·) to the system and
denote the new stationary distribution as pu(·)(η).

We say that the system has “weak canonicality” for a class of potentials U if

pu(·)(η) � exp

[
β�[u(·)] − β

∑
x∈�

u(x) ηx

]
p0(η), (B.46)

for any u(·) ∈ U , where the function �[u(·)] ensures the normalization.
If (B.46) holds we can easily show a minimum work principle

W ≥ �[utf (·)] − �[u0(·)], (B.47)

for a time-dependent Markov process where ut (·) varies within U . We can also
show the expected formula for density fluctuation and a version of fluctuation-
response relation based on (B.46).

We therefore regard it an important task to study which models possess weak
canonicality for which classes of potentials. So far we only know of some simple
examples.

B.6. Linear Response

We can also develop a linear response theory for time-dependent phenomena
which take place when the potentials u1, u2 become time-dependent. As we have
already remarked in Sec. A.4, it may not be too surprising that we can study linear
transport phenomena, since we are dealing only with transport through the weak
contact. Nevertheless it might be of some importance that a linear response theory
in a highly nonequilibrium system can be constructed unambiguously. Recent
numerical study(84) indicates the validity of the fluctuation response relation in
DLG when a weak probing field orthogonal to the strong driving field is applied.
This finding is similar to the result we present here, but (theoretically speaking) is
more delicate.

Since the potential affects only hopping between �1 and �2, we only need to
treat slow stochastic dynamics of particle exchange. We again fix the total number
of particles to 2N , and only specify N1, the number of particles in �1.
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For simplicity63 we set u1 = 0 and u2 = λ h(t), where h(t) is an arbitrary
(not too pathological) function such that h(t) = 0 for t < 0. λ is a small parameter
in which we shall expand. We denote by p̃t (N1) the probability that there are N1

particles in �1 (and hence 2N − N1 particles in �2) at time t . It satisfies the
master equation

d

dt
p̃t (N1) =

∑
σ=±1

{− p̃t (N1) c̃λ(N1 → N1 + σ )

+ p̃t (N1 + σ ) c̃λ(N1 + σ → N1)}, (B.48)

for any t ≥ 0 and N1, where c̃λ(N1 → N1 + σ ) is the transition rate (B.15) or
(B.17) with u1 = 0 and u2 = λ h(t). The initial distribution p̃0(N1) is taken to
be the stationary distribution (studied in Sec. B.4) with u1 = u2 = 0. We wish to
solve (B.48) in the lowest order of λ.

From (B.15) and (B.17), we find that

c̃λ(N1 → N1 − 1) = c̃0(N1 → N1 − 1) (B.49)

and

c̃λ(N1 → N1 + 1) = c̃0(N1 → N1 + 1) eλ β h(t)

= c̃0(N1 → N1 + 1)

+ λ β h(t) c̃0(N1 → N1 + 1) + O(λ2). (B.50)

By substituting (B.49) and (B.50) into the master equation (B.48), we get

d

dt
p̃t (N1) =

∑
N ′

1

�(N1, N ′
1) p̃t (N ′

1)

+ λ β h(t) {− p̃t (N1) c̃0(N1 → N1 + 1) + p̃t (N1 − 1)

× c̃0(N1 − 1 → N1)} + O(λ2), (B.51)

where we have defined �(N1, N ′
1) by

∑
N ′

1

�(N1, N ′
1) q(N ′

1) =
∑

σ=±1

{−q(N1) c̃0(N1 → N1 + σ )

+ q(N1 + σ ) c̃0(N1 + σ → N1)}, (B.52)

for any q(·).

63 Extension to models with varying u1 is automatic.
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The time evolution operator Ut (N1, N ′
1) for u1 = u2 = 0 is defined as the

solution of
d

dt
Ut (N1, N ′

1) =
∑
N ′′

1

�(N1, N ′′
1 ) Ut (N ′′

1 , N ′
1), (B.53)

with the initial condition U0(N1, N ′
1) = δN1,N ′

1
. Then it is standard64 that the per-

turbative solution of the master equation (B.51) is given by

p̃t (N1) = p̃0(N1) + λ β

∫ t

0
ds

∑
N ′

1

Ut−s(N1, N ′
1) h(s)

×{− p̃0(N ′
1) c̃0(N ′

1 → N ′
1 + 1) + p̃0(N ′

1 − 1) c̃0(N ′
1 − 1 → N ′

1)}
+ O(λ2)

= p̃0(N1) − λ β

∫ t

0
ds

∑
N ′

1

∑
σ=±1

Ut−s(N1, N ′
1) h(s) σ p̃0(N ′

1 + σ )

×c̃0(N ′
1 + σ → N ′

1) + O(λ2), (B.54)

where we used the detailed balance condition p̃0(N ′
1) c̃0(N ′

1 → N ′
1 + 1) =

p̃0(N ′
1 + 1) c̃0(N ′

1 + 1 → N ′
1) to get the final expression.

We define the “current operator” by

jN1,N ′
1
= c̃0(N ′

1 → N1) (N ′
1 − N1), (B.55)

which measures the number of particle (which number is either 0, 1 or −1) that
have passed from �1 to �2 at a given instant. Then the solution (B.54) can be
written in the form

p̃t (N1) = p̃0(N1) − λ β

∫ t

0
ds

∑
N ′

1,N ′′
1

Ut−s(N1, N ′
1) h(s) jN ′

1,N ′′
1

p̃0(N ′′
1 ) + O(λ2),

(B.56)
which is the basic equation of our linear response theory.

The average 〈N̂1(t)〉λ = ∑
N1

N1 p̃t (N1) of the number of particles in �1 at
time t can be evaluated by using (B.56) as

〈N̂1(t)〉λ = N − λ β

∫ t

0
ds

∑
N1,N ′

1,N ′′
1

N1 Ut−s(N1, N ′
1) h(s) jN ′

1,N ′′
1

p̃0(N ′′
1 ) + O(λ2),

(B.57)

64 A quick derivation. Here we write N instead of N1. Write (B.51) as d p̃t (N )/dt = ∑
N ′ {�(N , N ′) +

λ χt (N , N ′)} p̃t (N ) + O(λ2), and write the solution as p̃t (N ) = p̃0 + λ qt (N ) + O(λ2). Then by
noting that

∑
N ′ �(N , N ′) p̃0(N ′) = 0, one finds that qt (N ) satisfies the differential equation

dqt (N )/dt = ∑
N ′ �(N , N ′) qt (N ′) + λ

∑
N ′ χt (N , N ′) p̃0(N ′). It is easy to check that the solu-

tion is written as qt (N ) = ∫ t
0 ds

∑
N ′,N ′′ Ut−s (N , N ′) χs (N ′, N ′′) p0(N ′′).
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where we noted that the average in the steady state with u1 = u2 = 0 satisfies∑
N1

N1 p̃0(N1) = N . We can further rewrite (B.57) as

〈N̂1(t)〉λ = N − λ β

∫ t

0
ds h(s) 〈N̂1(t) ĵ(s)〉0 + O(λ2), (B.58)

where the definition of the time-dependent correlation function 〈N̂1(t) ĵ(s)〉0 may
be clear by comparing (B.58) with (B.57). This is the desired fluctuation-response
relation for the particle exchange process in the weakly coupled DLG.

When h(t) is a step function with h(t) = 0 for t < 0 and h(t) = 1 for t ≥ 0,
then (B.58) simplifies as

〈N̂1(t)〉λ = N − λ β

∫ t

0
ds 〈N̂1(t) ĵ(s)〉0 + O(λ2)

= N + λ β 〈N̂1(t) {N̂1(t) − N̂1(0)}〉0 + O(λ2). (B.59)

B.7. µ-Wall in the Driven Lattice Gas

Let us comment on how the notion of µ-walls introduced in Sec. 7.1 can be
implemented in the driven lattice gas.

The answer seems to be very simple. The weak coupling scheme of Sec. B.3.1
can be applied to situations where the subsystems on �1 and �2 have different
values of nonequilibrium parameters. If we set E = 0 for the subsystem on �2, a
contact between a steady state and an equilibrium state is realized. We may assume
that this weak coupling realizes a µ-wall. (But see the remark at the end of this
section.)

To see that this defines µ(T, E ; V, N ) consistently (see the discussion at the
end of Sec. 7.1), it suffices to show that the formula (B.20) gives the standard
chemical potential for equilibrium states. This fact can be checked directly for
general cases, but the easiest way is to treat the free system with H�(·) = 0 at
equilibrium. Then (B.20) gives

µ(ρ) = 1

β
log

ρ

1 − ρ
, (B.60)

which coincides with the result from equilibrium statistical mechanics. Since it
is guaranteed that two systems in a weak contact have the same values of µ(ρ),
it follows that (B.20) gives the equilibrium chemical potential in an arbitrary
equilibrium system.

We therefore conclude that the formula (B.20) gives a consistent chemical
potential µ(T, E ; V, N ) for a local steady state (T, E ; V, N ) including its depen-
dence on T and E . Similarly the formula (B.25) defines the corresponding free
energy F(T, E ; V, N ) without ambiguity.
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It should be recalled, however, that we concluded in Sec. 7.1 that a contact
between an equilibrium state and a nonequilibrium steady state cannot be realized
in the (T, φ; V, N ) formalism. If we stick onto the interpretation that E represents
the electric field, we must again conclude that our contact is not realistic. Never-
theless the fact that we can construct (at least theoretically) a consistent µ-wall
may be of importance and interest.

B.8. Perturbative Estimate of the SST Free Energy

We found that (B.20) can be regarded as the definition of SST chemical
potential for the steady state in the driven lattice gas. It is worth trying to evaluate
this and other thermodynamic quantities explicitly. Since exact calculations are
so far impossible, we here calculate the leading contributions in the limit of low
density and high temperature.

First by substituting the definition (B.16) of g(N ) into the chemical potential
(B.20), and expanding the exponential, we get

µ(ρ) = 1

β
log

ρ − β J
∑

y;| y−x|=1〈ηxη y〉 + O(ρ3)

1 − ρ
, (B.61)

where we noted that 〈ηx〉 = ρ. In the present section we consider a uniform system
on �, and suppress the suffixes T , E , �, and N because they are always fixed. We
thus need to evaluate the two-point correlation function

〈
ηxη y

〉
.

We evaluate the leading nonequilibrium correction to
〈
ηxη y

〉
by using the

standard procedure. One first notes that, for any function h(η) of the configuration,
there is an identity∑

η

p(η)
∑
〈u,v〉

c(η → ηu,v){h(ηu,v) − h(η)} = 0, (B.62)

which follows from the master equation (2.23). p(η) is the steady state distribution.
We here set h(η) = ηxη y. We substitute the transition rate (B.6) into (B.62) and
keep only those terms which have order ρ2. After a straightforward (but a little
tedious) calculation, we get∑

u∈�

|u−x|=1, u �= y

{−φ(β{Jx, y − Ju, y + E(x1 − u1)}) G̃(x, y)

+φ(β{Ju, y − Jx, y + E(u1 − x1)}) G̃(u, y)
}

+
∑
v∈�

|v−x|=1, v �=x

{−φ(β{Jx, y − Jx,v + E(y1 − v1)}) G̃(x, y)

+φ(β{Jx,v − Jx, y + E(v1 − y1)}) G̃(x, v)
} = O(ρ3), (B.63)
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where G̃(x, y) = 〈
ηxη y

〉
, and Jx, y = J if |x − y| = 1 and Jx, y = 0 otherwise.

Since
∑

x ηx = N , the two point function G̃(x, y) must satisfy
∑

x, y G̃(x, y) =
N (N − 1). This normalization condition and the Eq. (B.63) determines G̃(x, y)
(to the order ρ2).

By using the translation invariance, we can write G̃(x, y) = G(x − y) +
O(ρ3) with a function G(x) of x ∈ �\{o}. Here o = (0, 0) is the origin. From
(B.63), we see that G(x) satisfies the equation65∑

y∈�

|x− y|=1, y �=o

{−c̃(x → y) G(x) + c̃( y → x) G( y)} = 0, (B.64)

for any x ∈ �. Here the effective transition rate is given by

c̃(x → y) = φ(β{Jx − Jy + E(x1 − y1)}) + φ(β{Jx − Jy + E(y1 − x1)}),
(B.65)

with Jx = J if |x| = 1 and Jx = 0 otherwise.
Let us denote the unit vectors as e1 = (1, 0) and e2 = (0, 1). We in-

troduce U = {e1,−e1, e2,−e2}, which is the set of sites neighboring to the
origin o. Now unless x or y is in U , we have c̃(x → y) = t ≡ φ(βE) +
φ(−βE) if x − y = ±e1, and c̃(x → y) = s ≡ 2φ(0) if x − y = ±e2. The ef-
fective hopping rate c̃(x → y) become irregular only around the origin. More
precisely, for x ∈ U , we have c̃(x → x ± e1) = φ(β{J + E}) + φ(β{J − E}),
c̃(x ± e1 → x) = φ(−β{J + E}) + φ(−β{J − E}), c̃(x → x ± e2) = 2φ(β J ),
and c̃(x ± e2 → x) = 2φ(−β J ).

By explicitly separating the equilibrium behavior in G(x), we write

G(x) = G0 eβ Jx (1 + ψx), (B.66)

where ψx is the nonequilibrium correction which vanishes if E = 0, and G0 is the
normalization constant. By substituting (B.66) into (B.64), we get∑

y∈�

|x− y|=1, y �=o

{−t(x → y)(1 + ψx) + t( y → x)(1 + ψ y)} = 0, (B.67)

where the hopping rates are written as

t(x → y) = t (0)(x → y) + �t(x → y), (B.68)

with t (0)(x → x ± e1) = t and t (0)(x → x ± e2) = s for any x ∈ �. As for the
correction near the origin, we have, for x ∈ U ,

�t(x → x ± e1) = eβ J {φ(β{J + E}) + φ(β{J − E})} − {φ(βE) + φ(−βE)},
�t(x ± e1 → x) = φ(−β{J + E}) + φ(−β{J − E}) − {φ(βE) + φ(−βE)},

65 This is the same equation as one gets for the driven lattice gas with only two particles as studied in
Ref. 81.
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�t(x → x ± e2) = 2eβ J φ(β J ) − 2φ(0),

�t(x ± e2 → x) = 2φ(−β J ) − 2φ(0), (B.69)

and �t(x → y) = 0 for other combinations.
Note that �t(x → y) → 0 as β → 0. We thus neglect the cross terms �t ψ in

(B.67) to get the lowest order contribution for ψx in the limit of high temperature.
The result is∑

y∈�

|x− y|=1, y �=o

{ − t (0)(x → y)ψx + t (0)( y → x)ψ y

} = −Qx, (B.70)

with

Qx =
∑
y∈�

|x− y|=1, y �=o

{�t( y → x) − �t(x → y)}. (B.71)

Note that (B.70) is nothing but the Laplace-Poisson equation on the two-
dimensional lattice with charge distribution Qx .

The charge Qx can be calculated using the explicit forms (B.69) of �t(x →
y) and the (local detailed balance) condition φ(h) = e−hφ(−h), which is (2.28).
After a little calculation one finds that Q±e1 = Q0, Q±2e1 = −Q0, Q±e2 = 2Q0,
Q±e1±e2 = Q±e1∓e2 = −Q0, and Qx = 0 otherwise, where

Q0 = φ(−β{J − E}) + φ(−β{J + E}) − eβ J {φ(β{J + E}) + φ(β{J − E})}
= (1 − eβE )φ(−β{J − E}) + (1 − e−βE )φ(−β{J + E}). (B.72)

As can be seen from Fig. 24, the charge distribution Qx is a collection of
quadrupoles.

++

++

+ +

Fig. 24. The nonequilibrium correction ψx is the solution of the Laplace-Poisson equation with the
charge distribution Qx . The symbols +, − represents the charge Q0 and −Q0. Note that this is a
collection of quadrupoles.
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Clearly one has Q0 = 0 if E = 0. By expanding in β, we find that the leading
behavior of Q0 is

Q0 = β3

2
E2 J (4φ′′(0) − φ(0)), (B.73)

where we assumed that φ(h) is differentiable, and used the fact that (2.28) implies
φ′(0) = −φ(0)/2.

Thus the nonequilibrium correction ψx can be obtained by solving the
Laplace-Poisson equation (B.70) with the charge distribution Qx of Fig. 24. Note
also that, to get the lowest order behavior in β, we can set t = s = 2φ(0). Since
the charge distribution is a collection of quadrupoles, the long range behavior of
ψx is given by

ψx ≈ (x1)2 − (x2)2

|x|4 , (B.74)

which is the famous 1/rd long range correlation (see Refs. 20, 81, 92). But we
are here interested only in the very short range behavior, i.e., the values of ψx for
x ∈ U . Clearly for x ∈ U , the solution of (B.70) is given by ψx � const. Q0/t
with positive constants. It is not an easy task to determine the constants, but
they are certainly numerical constants (which do not depend on any of the model
parameters) of order 1.

We therefore conclude that the leading correction in the nearest neighbor
correlation function is given as

∑
y;| y−x|=1

〈
ηxη y

〉 �
∑

y;| y−x|=1

〈ηxη y〉eq + C

(
4
φ′′(0)

φ(0)
− 1

)
β3 E2 Jρ2, (B.75)

where 〈· · ·〉eq denotes the expectation in the corresponding equilibrium, and C is a
positive numerical constant which does not depend on any of the model parameters
(and may be computed numerically if necessary).

By substituting (B.75) into (B.61) and further expanding, we finally get

µ(T, E ; ρ) � µ(T, 0; ρ) − C

(
4
φ′′(0)

φ(0)
− 1

)
β3 E2 J 2ρ. (B.76)

By substituting this into (B.25), we get

f (T, E ; ρ) � f (T, 0; ρ) − C

2

(
4
φ′′(0)

φ(0)
− 1

)
β3 E2 J 2ρ2, (B.77)

which is the concrete form of SST free energy for the driven lattice gas.
One of our postulates of SST stated in Sec. 7.3 is that the free energy

f (T, E ; ρ) is a concave function of E , i.e., ∂2 f (T, E ; ρ)/∂ E2 ≤ 0. It is apparent
from (B.77) that the validity of this postulate depends crucially on the choice of
the function φ(h). As for the most standard heat-bath rule with φ(h) = (1 + eh)−1,
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we have φ′′(0) = 0, which means that f (T, E ; ρ) does not satisfy the conjectured
concavity.

C. THE “SECOND LAW” FOR A GENERAL TIME-DEPENDENT

MARKOV PROCESS

Let us state and prove the “second law” in a Markov process which was used
in Secs. 2.3.3 and B.5.

C.1. Main Results

Let S be a finite state space, and c(α)(s → s ′) be arbitrary transition rates
which ensure ergodicity. (See Sec. 2.3.1 for the general setup.) By p(α)

∞ (s) we
denote the stationary distribution for the time-independent Markov process with
constant transition rates c(α)(s → s ′). More precisely it satisfies∑

s ′∈S
(s ′ �=s)

{ − c(α)(s → s ′) p(α)
∞ (s) + c(α)(s ′ → s) p(α)

∞ (s ′)
} = 0, (C.1)

for any s ∈ S. (See (2.24).) Let us define

ϕ(α)(s) = − log p(α)
∞ (s). (C.2)

Fix an arbitrary differentiable function α(t) with 0 ≤ t ≤ tf , and consider
a time-dependent Markov process with the transition rates c(α(t))(s → s ′). The
probability distribution pt (s) at time t satisfies the master equation

d

dt
pt (s) =

∑
s ′∈S
(s ′ �=s)

{ − c(α(t))(s → s ′) pt (s) + c(α(t))(s ′ → s) pt (s
′)
}
, (C.3)

for any s ∈ S. We set the initial condition as

p0(s) = p(α(0))
∞ (s). (C.4)

We denote the average over pt (s) as 〈g(s)〉t = ∑
s∈S g(s) pt (s).

Then the well known “second law” is∫ tf

0
dt

dα(t)

dt

〈
d

dα
ϕ(α)(s)

∣∣∣∣
α=α(t)

〉
t

≥ 0. (C.5)

C.2. Proof

For completeness we prove the “second law” (C.5). Although the standard
proof makes use of relative entropy (see, for example, Sec. 2.9 of Ref. 93), we
here present a direct proof.
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Only in the present proof, we make use of the probabilistic language and
denote by ŝ(t) the random variables for the present Markov process. Thus pt (s) =
Prob[ŝ(t) = s].

Fix a positive integer N , and let �t = tf/N . Let66

T t (s, s ′) = Prob[ŝ(t) = s | ŝ(t − �t) = s ′]. (C.6)

In physicists’ language, T t (s, s ′) is the time-evolution kernel from t − �t to t ,
since it satisfies

pt (s) =
∑
s ′∈S

T t (s, s ′) pt−�t (s
′), (C.7)

where pt (s) is the solution of the master Eq. (C.3) with an arbitrary initial condition.
Note that ∑

s ′∈S
T t (s, s ′) p(α(t))

∞ (s ′) = p(α(t))
∞ (s) + O((�t)2). (C.8)

For n = 0, 1, . . . , N , let tn = n �t . Define a random quantity

Q̂ =
N−1∏
n=0

p(α(tn+1))
∞ (ŝ(tn))

p(α(tn ))
∞ (ŝ(tn))

. (C.9)

By using (C.8) repeatedly, we find that

〈Q̂〉 =
∑

s0,s1,...,sN−1∈S

{
N−1∏
n=1

T tn (sn, sn−1)

}
pα(t0)

∞ (s0)
N−1∏
n=0

p(α(tn+1))
∞ (sn)

p(α(tn ))
∞ (sn)

=
∑

s1,...,sN−1∈S

{
N−1∏
n=2

T tn (sn, sn−1)

}
pα(t1)

∞ (s1)
N−1∏
n=1

p(α(tn+1))
∞ (sn)

p(α(tn ))
∞ (sn)

+ O((�t)2)

= · · ·
=

∑
sN−1∈S

pα(tN )
∞ (sN−1) + N O((�t)2)

= 1 + O(�t). (C.10)

Then since log x ≤ x − 1, we have 〈log Q̂〉 ≤ 〈Q̂ − 1〉 = O(�t). But from (C.9)
and (C.2), we have

〈log Q̂〉 = −
N−1∑
n=0

〈
ϕ(α(tn+1))(ŝ(tn)) − ϕ(α(tn ))(ŝ(tn))

〉

66 Prob[A|B] = Prob[A and B]/Prob[B] is the conditional probability of an event A given that an
event B is true.
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= −
N−1∑
n=0

〈
ϕ(α(tn+1))(s) − ϕ(α(tn ))(s)

〉
tn

= −
N−1∑
n=0

{
�t

dα(tn)

dt

〈
d

dα
ϕ(α)(s)

∣∣∣∣
α=α(tn )

〉
tn

+ O((�t)2)

}
.

(C.11)

By letting N → ∞, we get the desired (C.5).
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